Municipal Solid Waste Composition Study
at the University of Florida
2014

Prepared for University of Florida
Office of Sustainability and Physical Plant Division

Prepared by
Dr. Timothy G. Townsend
Sarah A. Gustitus
Ashley Walsh
Max J. Krause
Executive Summary

The University of Florida has stated a goal to divert 90% of its municipal solid waste (MSW) stream from landfilling or incineration. To understand waste being landfilled, MSW was sorted in two phases during the spring 2014 semester. Waste was sorted on campus from selected dumpsters (Phase 1) and at the Leveda Brown Transfer Station from waste collection trucks (Phase 2). Waste composition of the UF MSW stream has changed since the previous study, conducted in 2009. Waste composition data, including categorical analyses, are presented here. Large portions of the waste stream are currently recyclable or compostable. Some waste materials are not currently recyclable through Alachua County but vendors for such materials are available nationally. Observations and recommendations are also provided. The figure below incorporates all UF waste fractions to indicate how each fraction (or portions of fractions) are currently being managed. Information for recycling and hazardous waste was provided by the Physical Plant Division (Dale Morris, PPD), and information on MSW constituents was gained from the MSW study discussed in this report.
Table of Contents

Executive Summary .. 2
Abbreviations and Acronyms ... 7
1 Introduction .. 8
 1.1 Motivation .. 8
 1.2 Initiatives to Reduce Waste .. 9
 1.3 Scope .. 10
2 Waste Generated at University of Florida ... 11
 2.1 Hazardous Waste ... 11
 2.2 Biomedical Waste .. 11
 2.3 Construction and Demolition Debris ... 12
 2.4 Recycling streams ... 12
 2.5 Municipal Solid Waste .. 14
 2.6 Food waste ... 16
3 Methods and Materials .. 17
 3.1 Materials ... 17
 3.2 Phase I Methodology .. 17
 3.3 Phase 2 Methodology .. 20
4 Waste Generation and Composition at University of Florida 22
 4.1 Composition of the UF Waste Stream ... 22
 4.2 Historical Generation Trends .. 23
 4.2.1 Waste Generation Trends .. 24
 4.2.2 Recorded Waste Category Generation Trends ... 25
 4.2.3 Recycling Trends ... 27
 4.3 Characterization of MSW ... 28
 4.3.1 Campus Sources .. 29
 4.3.2 Phase 1: Source-selected samples ... 30
 4.4 Phase II: Aggregated MSW Samples .. 33
 4.5 Results by Generation Point .. 36
 4.6 Results by Waste Type ... 37
5 Discussion ... 38
 5.1 Comparison to National, State and County Progress & Goals 38
 5.2 Comparison to other Universities’ Waste Programs ... 39
6 Observations and Recommendations ... 40
6.1 Implications and Opportunities by Waste Type ... 40
 6.1.1 Organic Waste ... 40
 6.1.2 Plastic .. 40
 6.1.3 Paper products .. 41
 6.1.4 Other Recyclables ... 41
 6.1.5 Residuals .. 42
6.2 Implications and Opportunities by Waste Source .. 42
 6.2.1 Housing .. 42
 6.2.2 Academic ... 43
6.3 Recommendations ... 43
 6.3.1 Communication and Outreach ... 43
 6.3.2 Education .. 44
 6.3.3 Spatial Identification .. 44
 6.3.4 Expanding recyclable materials .. 44
7 Conclusion ... 45
8 Acknowledgements .. 46
9 References ... 47
A Methods and Safety ... 49
 A.1 Safety Protocol .. 49
 A.2 Phase I Methodology .. 53
B Phase I .. 54
 B.1 PPD List of Locations .. 54
 B.2 Blank Recording Sheet ... 69
 B.3 Results by Weight ... 70
 B.4 Results by Volume ... 74
C Phase II ... 78
 C.1 Blank Sort Sheet .. 78
 C.2 Results by Weight ... 79
List of Figures

Figure 2.1. Red bags inside of medical waste roll-off .. 12
Figure 3.1. UF has three waste collection vehicles that discard MSW at the Leveda Brown Transfer Station .. 20
Figure 4.1. Composition of 2013 waste stream by primary and secondary categories (Source: PPD, 2013) ... 23
Figure 4.2. Total waste stream generation (tons) at UF from 2004-2013 24
Figure 4.3. Monthly waste stream generation (tons) at UF for 2004-2013 25
Figure 4.4. Total waste generated at UF from 2004-2013 by primary waste category. .. 26
Figure 4.5. Average contributions of primary categories to the waste stream at UF from 2004-2013 ... 27
Figure 4.6. Average composition of the recycling stream at UF from 2004 – 2013... 28
Figure 4.7. Campus source contributions to the overall MSW stream at UF.......... 29
Figure 4.8. (A) Contribution by weight of each MSW category as determined during Phase I. (B) Contribution by volume of each MSW category as determined during Phase I.. 33
List of Tables

Table 3.1. MSW was sorted into the following categories during Phase 1. 19
Table 3.2. Phase II categories were used for sorting waste at the Leveda Brown transfer station .. 20
Table 4.1. Type and number of waste samples collected during Phase 1. 31
Table 4.2. Results of the Phase 1 waste audit .. 32
Table 4.3. Results of Phase 2 waste audit .. 34
Table 4.4 UF MSW generation by generator type ... 36
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&D</td>
<td>Construction and demolition debris</td>
</tr>
<tr>
<td>EH&S</td>
<td>Environmental Health and Safety</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FDEP</td>
<td>Florida Department of Environmental Protection</td>
</tr>
<tr>
<td>HHW</td>
<td>Household hazardous waste</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>PPD</td>
<td>Physical Plant Division</td>
</tr>
<tr>
<td>ZWIA</td>
<td>Zero Waste International Alliance</td>
</tr>
</tbody>
</table>
1 Introduction

The University of Florida campus spans 2,000 acres with more than 900 buildings, including 170 with classrooms and labs. On-campus housing has a capacity for over 8,500 students between undergraduate, and graduate and family housing. In addition to campus residents, over 50,000 additional faculty, staff, students and visitors come to campus to work, study, or otherwise utilize campus resources. In the 2014 year alone, student enrollment was at 49,555 and staff was listed as 13,729 FTE. This diversity of services, opportunities, and people on campus results in an equally diverse waste stream.

The purpose of this study is to give a summary of the current waste generation on UF’s campus. Trends in waste generation over the past decade will be analyzed and the results of a municipal solid waste (MSW) composition study carried out for this audit will also be discussed. These insights into the current waste stream generated at UF will help to guide future efforts for waste reduction on campus.

1.1 Motivation

In 2009 a similar waste audit was completed for the University of Florida campus. For this study, a team of environmental engineering students, under the guidance of Dr. Timothy Townsend, carried out an MSW composition study, which was analyzed in the waste audit report. The 2009 report also included a snapshot of current waste management practices on campus, as well as insight into historic trends in waste production at the university. Recommendations were made for reducing waste generation around campus.

This report and the MSW composition study completed for this report, is a continuation of the effort that was started in 2009. In the years since the 2009 report, both student groups and university officials have encouraged waste reduction around campus, putting several new campaigns and programs into place. The impact of these new campaigns and programs, however, has not been measured on a campus-wide scale. Therefore, this report will assess the progress that has been made since the 2009 report, and will recommend a course of action to further reduce waste on campus.

To manage the variety and quantity of waste on the UF campus, the UF Office of Sustainability has established a Zero Waste goal. Largely in line with the Zero Waste International Alliance (ZWIA) definition, this means a 90% diversion from landfills, with 10% allowable landfill and incineration (ZWIA, 2013). In some counties, incineration is considered a form of recycling, as will be discussed further in depth later. However, Alachua County has a “no burn policy,” and thus waste – such as hazardous or medical – that must be incinerated cannot be diverted (UF Office of Sustainability, 2014b).

To help with this goal, the Office works with the Physical Plant Division (PPD) to continually assess the waste stream in order to implement comprehensive waste reduction and recycling programs for UF. Throughout campus, separate divisions are creatively diverting their waste. For instance, animal bedding at the Veterinary school is decontaminated and composted for commercial forestry. Yard
waste generated on campus is either hauled off by a contractor (lawn clippings, weeds, dirt) or taken to Watson’s C&D to be turned into mulch or compost (woody, bulky yard waste) (UF Office of Sustainability, 2014b). In addition to individual efforts in departments, the Office manages campus-wide initiatives and programs as detailed in the next section.

1.2 Initiatives to Reduce Waste

To attain the zero waste goal, the Office of Sustainability has implemented a variety of policies and directives, as well as student-run programs, to encourage waste reduction, reuse, and recycling. The former includes purchasing and recycling directives to ensure efficiency and to minimize the effects of UF’s waste on the environment (UF Office of Sustainability, 2014a). For instance, since the University went to paperless course evaluations, they have saved 1,091,290 pieces of paper. In Fall 2014 alone, 106,459 evaluations were submitted online, saving 850 lbs. of paper and approximately $6,500. The latter includes the TailGator Game Day and Stadium Recycling Team, who work together to collect and sort recyclables outside and inside the stadium during game days, as well as supporting student organizations like the Student Composting Cooperative (UF Office of Sustainability, 2014b). As part of the stadium recycling program, in 2013 Ben Hill Griffith Stadium reached a season high of 78% diversion through composting and recycling. The Office is currently working on a new event certification program, as well as office and green laboratory certification, that addresses waste reduction and recycling. Additionally, Green Teams are being revised to re-energize faculty and staff green teams.

Composting is a growing presence around UF. As for the dining halls, pre- and post-consumer composting is occurring at both Gator Corner and Fresh Food Corner. Pre-consumer composting occurs at the Reitz Union and began at the Racquet Club starting January 2015. PPD, to ensure the Office meets the zero waste goal, is constantly searching for new markets for hard-to-recycle products. Woody waste from grounds operations, common on the campus, is going to Watson C&D and County Line Landfill for composting and being chipped and used on campus. The University is also trying to include take-back provisions as part of new contracts.

In housing, Eco-Reps through the Inter-Residence Hall Association are responsible for environmental education and initiatives in residence halls. The yearly Housing Eco-Challenge focuses on energy and water usage, as well as waste. Eco-Reps also provide resources for donating and recycling unwanted materials during residence hall move-outs.

Furthermore, there are resources for other types of waste reuse and reduction, such as the reuse of research chemicals from UF ChemSwap, and purchasing electronic equipment and other goods at the Surplus Warehouse (UF Office of Sustainability, 2014b).
1.3 **Scope**

UF’s campus is defined for the purpose of this audit as the areas serviced by the UF Physical Plant Department (PPD). This includes the main campus as bounded by 34th Street, Archer Road, University Drive, and 13th Street, as well the veterinary school, UF Health (formerly Shands) facilities, and agricultural and recreational facilities south of the main campus. No UF-owned facilities outside of the main campus in Gainesville were included in this study.

In the MSW composition study carried out for this audit, only refuse disposed in MSW dumpsters was examined. No samples were collected from recycling, medical waste, or construction and demolition (C&D) debris receptacles. All of the samples were collected during the latter half of the spring, 2014 semester. The composition study was completed in two phases; in Phase I, individual dumpsters were sampled on campus, and in Phase II loads from garbage trucks were sampled at the Leveda Brown transfer station. The methodology used in these two phases is detailed in Chapter 3, and the results of the composition study are summarized in Chapter 4.

Comprehensive data furnished by the PPD was used to determine generation rates for recyclables, hazardous wastes, C&D debris and medical waste over the past decade. Data from 2004-2013 was examined to determine trends in these generation rates over the years. A representative from WCA provided additional information and clarification when needed.
2 Waste Generated at University of Florida

The wide scope of activities that occur on UF’s campus leads to a diverse waste stream. There are a wealth of waste receptacles around UF to accommodate disposal of different quantities and types of waste. Hazardous Waste, biomedical waste, construction and demolition (C&D) debris, MSW, and recyclables are all disposed of in separate containers. Receptacles range from small bins within classrooms and offices, to dumpsters, to large compactors. This chapter examines the many options for waste disposal on campus.

2.1 Hazardous Waste

Hazardous wastes are wastes that pose a significant threat to human or environmental health, as described in the Resources Conservation and Recovery Act (RCRA). A waste is considered hazardous if it is included in the Environmental Protection Agency’s (EPA) hazardous waste lists, or if it exhibits one of four hazardous characteristics. The numerous laboratories and other research facilities at UF contribute largely to the production of hazardous wastes on campus. The Environmental Health & Safety (EH&S) division at UF accumulates, stores, and manages this waste stream to ensure it is properly disposed.

2.2 Biomedical Waste

(Bio)Medical waste includes materials contaminated with bodily fluids, syringes and needles (sharps), and other objects that could present a biological hazard. Like hazardous wastes, these are managed and disposed separate from all other waste streams. This particular waste stream is largely produced at the UF Health facilities on UF’s campus, though some amount is produced in smaller quantities in research labs throughout campus. This waste is contained in red bags, with specific signage and wording indicating its contents. These bags are collected from waste containers and disposed of in biomedical roll-off bins.
2.3 Construction and Demolition Debris

UF is an ever-growing campus, with renovations, additions and new construction occurring on a constant basis. Construction and demolition (C&D) debris are collected in roll-off containers within a secured construction site. C&D debris are typically characterized by discards of concrete, cement, gypsum drywall, fiberglass insulation, scrap metal, masonry, and wood. These materials do not readily degrade and are disposed in a C&D landfill. In the cases where recycling of materials is possible (concrete, asphalt shingles, etc.), these items are collected and recycled by the contracted vendors.

2.4 Recycling streams

Alachua County and UF operate a dual-stream recycling system, separately handling paper products and containers. On campus, MSW bins can typically be found accompanied by a suite of recycling bins. There are also dumpsters dedicated to recyclables throughout campus.

Paper products consist of office paper, newspaper, cardboard, pasteboard, and mail. Paper products are susceptible to contamination from non-recyclable materials, which degrades the quality of the material and reduces recyclability and value. Thus, it is important to prevent other materials from entering the paper recycling bins. Typical containers for food, beverage, or transportation can be made of ferrous (steel) and non-ferrous metals (aluminum), plastics, and glass. All
containers are collected in the same bin. Both recycling streams are further sorted and managed at the Leveda Brown Environmental Park.

Figure 2.2. Recycling bins accompanying an MSW bin at the Rawlings bus stop.

Figure 2.3. Dumpster for paper product recycling, accompanied by can and bottle receptacles at Jennings Hall
Several other waste streams are also recycled at UF. Treated biosolids from the Murphree Waste Water Treatment facility are recycled for land application. Biosolids are nutrient rich organic materials resulting from sewage treatment, which can be used as fertilizer, incinerated or landfilled (EPA, 2014b).

Masonry, yard waste, and electronic wastes are also recycled at UF. Masonry primarily results from C&D projects, and is reusable. Collected branches, leaves, and clippings make up yard waste. Leafy yard waste is hauled off by a contractor and can be used as landfill cover, while larger, woody yard waste is brought to Watson C&D to be used in compost. Electronic waste, commonly called e-waste, includes discarded, surplus, obsolete or broken electronic devices. These wastes are recycled for their parts and to ensure proper disposal of potentially hazardous constituents, if they are not used as surplus or sold off-campus.

2.5 Municipal Solid Waste

Municipal Solid Waste (MSW) comprises the largest portion of the waste stream on campus. MSW is made up of a large portion of the things that we throw away, including packaging, food waste, broken products, scrap paper, and yard waste. Industrial, hazardous, biomedical, and C&D waste are not included in the definition of MSW. Part of the MSW stream is diverted from landfills through recycling (Section 2.4). In 2012, Americans generated 251 million tons of waste, of which they recycled or composted 87 million tons (EPA, 2014a).

MSW is produced in all of the buildings and facilities on campus. Small collection bins are typically located in classrooms or individual offices where only a handful of people would be using them. Medium sized bins are located in hallways, food courts, and outdoors, accessible to many pedestrians. Dumpsters are utilized outside of buildings and other high traffic spaces such as recreational fields, to collect waste from all of the smaller receptacles for disposal. For especially large buildings, or buildings that generate waste at an especially high rate, mechanical compactors are utilized in place of dumpsters.
Figure 2.4. (A) Typical 4 yd3 MSW dumpster at Jennings Hall, (B) Larger 8 yd3 dumpster at Particle Sciences building

Figure 2.5. Sign indicating what cannot be disposed in an MSW dumpster
2.6 Food waste

The two UF dining halls currently send their post-consumer food waste to be composted, along with yard trimmings. As plants fall to the ground, they decay and provide nutrients for other vegetation. Organic materials that would usually be discarded in MSW, such as yard waste, food waste, and certain paper products, can be used to create compost. Composting compliments recycling in diverting MSW from landfills.

Food and bulky yard waste is currently sent to Watson C&D and County Line Landfill in Archer, FL. This facility also receives organic materials from sources all over Alachua County. The waste fractions are combined to create nutrient rich soil amendment. The yard waste serves primarily as a bulking agent, while food waste provides additional nutrients. The combined organic waste is allowed to stabilize in aerated piles or windrows.

Figure 2.6: A windrow at Watson C&D composting facility.
3 Methods and Materials

The objective of this waste composition study was to characterize the waste components found in the MSW stream. Only MSW was sampled in this study. No hazardous, biomedical, C&D, recycling, or food waste streams were examined in this study.

Waste was sorted in two separate phases (Phase 1 and Phase 2). Phase 1 applied the tactic of “dumpster diving” whereby students collected waste bags from MSW dumpsters around campus. Phase 2 employed a more common methodology published by ASTM International (ASTM D 5231). The following sections detail the methods and materials used in this research.

3.1 Materials

To efficiently and quickly sort MSW a sorting table was constructed from lumber and mesh wire. The sorting table was approximately 3'H x 3'W x 8'L and allowed for 8 people to simultaneously sort around the table. The surface consisted of a 2" x 2" square mesh layer which allowed residuals smaller than 4 in. to pass through. Below this was a 1" mesh which allowed residuals less than 1 in. to pass. A tarp was placed on the concrete floor to catch all fines that fell through both mesh layers. The table allowed for large samples to be easily removed and up to two levels of residual materials to be collected and weighed as a discrete waste stream.

Items were separated and placed in labeled recycling bins or 5-gallon buckets. Bins were weighed before and after the sort and the difference constituted the sample weight. A shipping scale was used to record the weights of waste components (Measuretek).

All sorters were required to wear safety goggles and two layers of gloves. A rubber and textile glove was worn over nitrile waterproof gloves to protect sorters from liquids and sharp objects. Dust masks and 3M full-body suits were available for sorters as desired.

3.2 Phase I Methodology

The MSW sorts carried out in Phase I were completed by the members of the undergraduate research team. Only MSW dumpsters located on the University of Florida campus were sampled during this composition study. No recycling, C&D, or medical waste receptacles were sampled during this study, and no MSW receptacles smaller than a dumpster were sampled (see Section 2 for a description of other receptacles). The methodology and safety guidelines for these sorts was developed and strictly adhered to by the members of the undergraduate research team. The full sort procedure and the safety protocol can be found in Appendix A.

In order to determine which dumpsters to sample, the buildings and areas on campus were divided into seven major categories: academic, administration, housing, dining, recreational, medical and miscellaneous. The contribution of each category to the waste stream was estimated based on the number and size of waste containers primarily receiving waste from each category. Data provided by PPD regarding location, volume, and pickup schedule of dumpsters, compactors, and roll-off containers was used in determining the contribution of each source. This
information is detailed in Appendix B. The estimation was done assuming a maximum load collected from each container on each pickup day. It is assumed that since collection bins are placed based on need, that this estimate is a reasonable representation of the MSW stream on campus. Using this estimate, the collection bins to be sampled were chosen.

The size of the sample collected from each dumpster was determined by weight. A standard size of 100 lbs was used for Phase I samples; any dumpster with less than 100 lbs of MSW was not sampled until it contained the necessary amount of waste. The waste collected was sampled to be representative of the entire contents of the dumpster; for example, if half of the waste in a dumpster was bagged, and half was loose, the 100 lb sample would have the same characteristics. Weights were determined with the use of a hanging weight.

Samples were brought back to a sorting area equipped with a sorting table on top of a tarp, and several bins to sort the waste into. Bags were opened onto a sorting table, and the contents were visually inspected for any hazardous materials. If hazardous materials were present, that sample was discarded. Once it was established that no hazards were present, members of the research team sorted the contents of the sample into bins labeled with the names of predetermined categories identified in Table 3.1. Fine materials that fell through the screen of the table to the tarp below were collected as miscellaneous solid waste. Liquids were also collected in a bucket and weighed.

Once the sample was completely sorted, the full bins for each category were weighed and the weights were recorded. A digital scale with precision to a tenth of a pound was used for weighing each category. Team members estimated and recorded the volume of each category by determining what fraction of the bin the waste filled.
Table 3.1. MSW was sorted into the following categories during Phase 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Newspaper</td>
<td>Newspapers</td>
</tr>
<tr>
<td></td>
<td>Corrugated Cardboard</td>
<td>Storage boxes</td>
</tr>
<tr>
<td></td>
<td>High Grade</td>
<td>Office paper</td>
</tr>
<tr>
<td></td>
<td>Mixed Recyclable</td>
<td>Junk mail</td>
</tr>
<tr>
<td></td>
<td>Boxboard</td>
<td>Cereal boxes</td>
</tr>
<tr>
<td></td>
<td>Composites / Other</td>
<td>Milk box</td>
</tr>
<tr>
<td>Plastic</td>
<td>#1-7 Pourable</td>
<td>Soda bottles, yogurt tubs</td>
</tr>
<tr>
<td></td>
<td>#1-7 Other (non-pourable,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nonfood)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Service</td>
<td>Styrofoam clamshells</td>
</tr>
<tr>
<td></td>
<td>Nonfood EPS</td>
<td>Computer packaging</td>
</tr>
<tr>
<td></td>
<td>Films</td>
<td>Shopping bags</td>
</tr>
<tr>
<td></td>
<td>Rigid Plastic/Other</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Aluminum & tin cans</td>
<td>Beverage can, soup can</td>
</tr>
<tr>
<td></td>
<td>Scrap Metal / Other</td>
<td>Nails</td>
</tr>
<tr>
<td>Glass</td>
<td>Total</td>
<td>Bottles, fragments</td>
</tr>
<tr>
<td>Organics</td>
<td>Food Waste</td>
<td>Food scraps</td>
</tr>
<tr>
<td></td>
<td>Compostable/Soiled Paper</td>
<td>Napkins, paper towels</td>
</tr>
<tr>
<td></td>
<td>Human and Animal Byproducts</td>
<td>Feces</td>
</tr>
<tr>
<td></td>
<td>Yard Waste</td>
<td>Leaves, grass, branches</td>
</tr>
<tr>
<td>Products</td>
<td>Mixed materials items</td>
<td>Iron, vacuum</td>
</tr>
<tr>
<td>Residuals</td>
<td>Solids</td>
<td>Fine fractions</td>
</tr>
<tr>
<td></td>
<td>Free liquids</td>
<td>Liquid from bottles</td>
</tr>
</tbody>
</table>
3.3 Phase 2 Methodology

A more typical methodology for sorting solid waste was employed in the second phase of research. This was to ensure the previous methodology did not have any unforeseen bias. ASTM D 5321 standardizes waste sorting of representative samples directly from waste hauling trucks (ASTM International, 2008). These samples were sorted at the Leveda Brown Transfer Station.

A waste collection truck emptied its waste onto the transfer station tipping floor. A front-end loader mixed the load of waste. Once the load was well-mixed, a representative sample (generally between 250 – 350 lbs) was collected and placed in the sorting area. The entire sample was categorized according to the waste components identified in Table 3.2.

Figure 3.1. UF has three waste collection vehicles that discard MSW at the Leveda Brown Transfer Station.

In this phase, both sieves were used, creating two residual fractions of MSW (<2” fines and <1” fines). These waste fractions were weighed but not sorted. Observations of the residuals can be found in the discussion section (Section 4).

Table 3.2. Phase II categories were used for sorting waste at the Leveda Brown transfer station.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper products</td>
<td>Cardboard</td>
<td>Shipping boxes</td>
</tr>
<tr>
<td></td>
<td>Newspaper</td>
<td>Newspapers</td>
</tr>
<tr>
<td></td>
<td>Office Paper</td>
<td>Printer paper</td>
</tr>
<tr>
<td></td>
<td>Junk Mail</td>
<td>Mail leaflets, windowed envelopes</td>
</tr>
<tr>
<td></td>
<td>Pasteboard</td>
<td>Cereal boxes</td>
</tr>
<tr>
<td></td>
<td>Misc. Paper</td>
<td>Construction paper</td>
</tr>
<tr>
<td></td>
<td>Aseptic Cartons</td>
<td>Milk boxes</td>
</tr>
<tr>
<td>Organics</td>
<td>Food & Soiled Paper</td>
<td>Food scraps, used paper towels, napkins</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Yard Trash</td>
<td>Leaves, grass, branches</td>
</tr>
<tr>
<td></td>
<td>Diapers</td>
<td>Diapers</td>
</tr>
<tr>
<td>Glass</td>
<td>Clear Glass</td>
<td>Glass bottles</td>
</tr>
<tr>
<td></td>
<td>Brown Glass</td>
<td>Glass bottles</td>
</tr>
<tr>
<td></td>
<td>Blue & Other Glass</td>
<td>Glass bottles</td>
</tr>
<tr>
<td>Metal</td>
<td>Aluminum Cans</td>
<td>Beverage cans</td>
</tr>
<tr>
<td></td>
<td>Tin/Steel Cans</td>
<td>Soup cans</td>
</tr>
<tr>
<td></td>
<td>Non-Ferrous Metal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ferrous Metals</td>
<td></td>
</tr>
<tr>
<td>Residuals</td>
<td><2" Fines</td>
<td>2” > material > 1”</td>
</tr>
<tr>
<td></td>
<td><1" Fines</td>
<td>1” > material</td>
</tr>
<tr>
<td></td>
<td>Textiles</td>
<td>Clothes</td>
</tr>
<tr>
<td></td>
<td>Free Liquids</td>
<td>Liquid from bottles</td>
</tr>
<tr>
<td>Plastics</td>
<td>PET, HDPE</td>
<td>Soda bottles, detergent bottle</td>
</tr>
<tr>
<td></td>
<td>PVC/LDPE/PP/PS/Other</td>
<td>Piping, food tubs</td>
</tr>
<tr>
<td></td>
<td>Plastic Film</td>
<td>Shopping bags, trash bags</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>Toothbrush</td>
</tr>
<tr>
<td></td>
<td>Other Rigid Plastic</td>
<td>Plastic fragments</td>
</tr>
<tr>
<td>C&D Debris</td>
<td>Carpet</td>
<td>Carpet</td>
</tr>
<tr>
<td></td>
<td>Concrete & Rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asphalt Shingles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensional Lumber</td>
<td>2” x 4”</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite Wood</td>
<td>Plywood</td>
</tr>
<tr>
<td></td>
<td>Rubber</td>
<td>Tires</td>
</tr>
<tr>
<td></td>
<td>Fiberglass Insulation</td>
<td>Insulation</td>
</tr>
<tr>
<td></td>
<td>Other C & D Debris</td>
<td></td>
</tr>
<tr>
<td>Household</td>
<td>Rx/Needles</td>
<td>Diabetic syringes</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>Paint/Aerosol</td>
<td>Spray paint</td>
</tr>
<tr>
<td></td>
<td>Batteries</td>
<td>AA, lead-acid, lithium</td>
</tr>
<tr>
<td></td>
<td>Mercury Wastes</td>
<td>Thermometer, thermostat</td>
</tr>
<tr>
<td></td>
<td>Automotive Parts</td>
<td>Filters, fans, lights</td>
</tr>
<tr>
<td>Durable goods</td>
<td>Large Appliances</td>
<td>Washing machine</td>
</tr>
<tr>
<td></td>
<td>Small Appliances</td>
<td>Microwave</td>
</tr>
</tbody>
</table>
4 Waste Generation and Composition at University of Florida

With nearly 50,000 students, over 3,000 faculty, 6,000 staff, and many more annual visitors, the UF campus serves as a hub for education, employment, research, dining, entertainment, recreation, residence and medical treatment. With such a variety of undertakings, the generation and composition of UF’s waste stream varies accordingly. In this chapter, information on historic and current data regarding overall waste stream composition and generation rates will be presented. Composition and generation trends of municipal solid waste and recycling are also examined. Lastly, the results of the 2014 MSW Composition Study will be presented, examining the composition of the MSW stream as it relates to the source of waste at the University of Florida.

4.1 Composition of the UF Waste Stream

The UF Physical Plant Division (PPD) records the monthly waste stream, separated into five categories. The five main categories are MSW, C&D, recycled materials, medical waste, and hazardous waste. Table 4.1 presents the weights collected for each of the five primary waste categories in 2013. The recycled materials category is broken up further into paper, scrap metal, masonry, cans & bottles, yard waste, sludge, electronics, and miscellaneous. MSW and C&D are each disposed of in separate dumpsters, compactors, and roll-off containers because they are disposed of at different landfill sites in the state of Florida. Recycled materials such as paper, cardboard, aluminum cans, and glass bottles are collected in specially marked receptacles throughout the campus. Trucks are used to collect other recyclable materials, such as yard waste, electronics, and sludge. Medical waste is collected in biohazard containers and sent to Stericycle® to be treated before final disposal. Hazardous waste is managed by EH&S.

Table 4.1 presents the weights collected for each of the five primary waste categories in 2013. The MSW and C&D categories were landfilled, the recycled materials category was recovered, and the medical and hazardous waste categories were landfilled after treatment. Figure 4.1 displays these weights as parts of the overall waste stream, with the recycled materials category broken into its components. As indicated in Figure 4.1, just over half of the waste stream is landfilled, while just under half of the waste stream is recovered. Approximately 55% of the waste stream is landfilled, 52% of which is MSW. Approximately 44% of the waste stream is diverted from landfill through recycling. Hazardous waste makes up the final 1% of the waste stream, and is treated and disposed based on the type of waste.
Table 4.1. Total weight of waste generated on campus for 2013 by primary category.

<table>
<thead>
<tr>
<th>Waste Category</th>
<th>Weight (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW</td>
<td>8,761</td>
</tr>
<tr>
<td>Recycled</td>
<td>7,488</td>
</tr>
<tr>
<td>Medical</td>
<td>279</td>
</tr>
<tr>
<td>Hazardous</td>
<td>169</td>
</tr>
<tr>
<td>C&D</td>
<td>145</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16,842</td>
</tr>
</tbody>
</table>

Figure 4.1. Composition of 2013 waste stream by primary and secondary categories (Source: PPD, 2013)

4.2 Historical Generation Trends

The UF PPD records the weight of the campus waste stream monthly in the five main categories: MSW, C&D, recycled materials, medical waste, and hazardous waste. Data furnished by UF PPD was used to analyze how the waste stream has changed over the past decade.
4.2.1 Waste Generation Trends

Figure 4.2 displays the total campus waste stream generation over the last 10 years. Despite a peak in 2010, the generation of waste on campus has trended downwards over the last decade, meaning the amount of waste produced has been decreasing. Over this past decade, there was an average of 18,100 tons produced per year, or approximately 50 tons per day. In 2010, there was a peak of over 25,500 tons of waste produced. Over 15,000 tons of this waste stream was recycled, 10,000 tons of that being masonry, due to a large amount of new construction that year. This peak is also displayed in later figures in this chapter.

![Waste Generation Chart]

Figure 4.2. Total waste stream generation (tons) at UF from 2004-2013.

Waste stream composition and quantity fluctuates with the changes in student population throughout the academic year. The monthly trends of waste generation for 2004-2013 are shown in Figure 4.3. Typically, a peak is seen in August associated with students moving into on-campus housing for the fall semester. Waste production is highest throughout the fall, due to the high volume of students, faculty and staff on campus as well as the influx of visitors arriving throughout the football season. The summer months of May through July are typically associated with the lowest amount of waste production as there are fewer students, faculty, and staff on campus throughout the summer.
Figure 4.4 displays the waste generated in each of the five primary categories over the past decade. MSW production has remained close to an average of 8,800 tons of waste generated per year, and has typically been the largest component of the waste stream. The amount of recycling exceeded the amount of MSW produced in 2004 by less than 50 tons, and then again in 2010 by over 6,600 tons with the peak in masonry recycling that year. Hazardous waste generation was estimated from biennial reports furnished by UF Environmental, Health and Safety, which were generated in odd years, and covered the hazardous waste generated in that odd year and the preceding even year. Therefore, the amount reported in each period was assumed to be split evenly between the two years covered. These reports show that hazardous waste generation has trended slightly upward over the last few years, mainly due to an increase in lab activity on campus. Both the C&D and medical waste streams have trended downwards in the last 10 years, indicating a reduction in waste production in those categories.
Recycled materials is the only category that has increased significantly over the past three years. This could be due to raised awareness for recycling on campus as well as widespread availability of recycling receptacles. Groups such as the Gator Green Team have also taken on recycling initiatives such as TailGator recycling shifts, where volunteers collect recyclables from tailgating visitors on football game days to encourage visitors to be conscious of the waste stream as well.

Figure 4.5 displays the contribution of each of the primary waste categories to the waste stream as averaged over the ten-year period from 2004 – 2013. The waste stream is composed of MSW (48%), recycling (42%), C&D (8%), medical (2%) and hazardous waste (0.4%). MSW makes up just under half of the waste stream
with an average contribution of 8,800 tons per year, followed by recycling with an average contribution of 7,770 tons per year. C&D and medical waste account for an average of 1,570 tons per year and 300 tons per year respectively. Hazardous waste has the smallest contribution, with an average waste stream of just 78 tons per year. MSW and C&D are sent directly to the landfill; therefore 56% of the 2004-2013 average waste stream was directly landfilled.

![Pie chart showing waste stream composition]

Figure 4.5. Average contributions of primary categories to the waste stream at UF from 2004-2013.

4.2.3 Recycling Trends

PPD records the weights of eight subcategories of recycled material: paper, scrap metal, masonry, cans & bottles, yard waste, sludge, electronics, and miscellaneous items including batteries, paints, and oils. These materials are all sent to appropriate facilities and therefore diverted from the MSW stream and subsequent landfiling. While UF PPD collects a large amount of recyclable material every year for recycling, many improperly discarded recyclables are placed in the MSW stream which is sent to the landfill.

Figure 4.6 shows the average composition of the recycling stream at UF from 2004-2013. Over this decade, yard waste (37%) has comprised the largest portion of the waste stream, followed by paper (24%) and masonry (25%). This average includes the 2010 peak in masonry recycling of 10,000 tons previously mentioned. Electronics (1%), cans & bottles (2%) and miscellaneous items (2%) make the smallest contribution to the recycling stream.
4.3 Characterization of MSW

As the largest fraction of the waste stream, MSW is of primary interest, but is not characterized on a regular basis. Characterizing the MSW stream by its components is key to identifying ways to reduce waste on campus and achieve UF’s zero waste initiative. Of the five waste categories, MSW is the most feasible to alter because it is composed of non-hazardous materials and is likely to contain material that could be recycled, reused, or otherwise diverted from a landfill.

The first element of this characterization delves into historical trends associated with MSW. Figure 4.7 shows how MSW at UF changes throughout the calendar year. The weight of the MSW stream is highest during the months of the fall semester (August-November) when most students, faculty and staff are on campus and home football games can draw over 90,000 spectators. The MSW stream drops off during the month of December, as the semester typically ends within the first two weeks of the month and a majority of the students depart for winter break. The MSW stream is also consistently high throughout the spring semester with a peak in April associated with students moving out of the dorms. The summer months have the lowest MSW production because of the decreased campus population.
4.3.1 Campus Sources

To characterize the campus waste stream, it was first necessary to evaluate and quantify the generation points in the waste stream. This was done following the methodology outlined in section 3.2. The estimated contributions of each source to the MSW stream are shown in Figure 4.8. It is apparent that housing (45%) and academic (28%) sources are the primary contributors to the waste stream.

Figure 4.8. Campus source contributions to the overall MSW stream at UF.
The MSW composition study was completed as a part of this waste audit to characterize the MSW being disposed at the University of Florida. For this study, only non-hazardous waste generated within the area serviced by UF PPD and disposed of in dumpsters was sampled. This waste study did not cover the entire UF waste stream, which as previously mentioned includes MSW, C&D debris, recyclables, medical, and hazardous waste. Two different phases were utilized in order to characterize the MSW at UF. These phases were as follows:

Phase 1: Small scale sorts of loads collected from individual dumpsters on campus
Phase 2: Large scale sorts of loads collected at the Leveda Brown transfer station from trucks servicing campus routes

Members of the research team carried out these two phases of the MSW Composition Study. In both phases loads were pulled from a predetermined source and then brought to a sorting area for analyses. The small scale sorts were completed on campus at a sort area outside of Black Hall, and the large scale sorts were completed at the Leveda Brown transfer station. A supervisor in the group would survey the collected waste for any hazardous materials such as sharp objects or noxious chemicals before the sort began. If the waste was determined to be clear of these objects, the rest of the team would then begin to sort the waste into predetermined categories. The full procedure, including safety protocol is detailed in Appendix A.

4.3.2 Phase 1: Source-selected samples

The first phase of the MSW composition study was carried out on campus, using samples from pre-selected dumpsters from around the university. Samples collected were approximately 100 lbs each. If a dumpster did not contain at least 100 lbs of waste when the team initially visited it, it was revisited in the future and only sampled when it contained the necessary amount of waste. Though samples were not selected based on their volume, the volume of each sample was recorded along with the weight. Table 4.1 summarizes the sample sources. The number of samples pulled from each category was based on the estimate for each source's contribution to the total MSW stream, such that the proportion of samples was representative of the estimated source contributions to the MSW stream. The complete list of locations where samples were collected can be found in Appendix B.
The goal of Phase I was to sort the MSW into specific categories to understand how type of waste varied based on its source. In total, there were 7 primary categories and 21 subcategories. The categories, subcategories, and their respective weights and volumes found during Phase I are summarized in Table 4.2. Note that compostable and soiled papers were included as organic materials instead of paper, due to the frequent saturation of these papers with organic materials such as foods and liquids. By weight, organics (40%) is the largest portion of the MSW stream, followed by plastic (19%), paper (18%), products (8%), miscellaneous (7%), glass (4%) and metal (3%). By volume, plastic (40%), was the largest portion of the waste stream, followed by paper (26%), organics (23%), metal (3%), products (4%), miscellaneous (2%), and glass (1%).

It is important to note that, of the subcategories, compostable/soiled paper (14%) and food waste (22%) are the largest contributors to the waste stream by weight. By volume, compostable paper (16%) is also the largest contributor, though food waste (5%) contributes less volume than other less dense materials. While the composting program has removed a large amount of the compostable materials from the waste produced by the dining halls, composting is not yet readily available for organic waste produced in campus housing, academic and administrative buildings, medical and recreational facilities, or other miscellaneous buildings around campus.

It is also important to note that recyclable materials such as #1-7 pourable spout plastics (8%), old corrugated cardboard (OCC) (7%), boxboard (6%), high

Table 4.1. Type and number of waste samples collected during Phase 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td>Animal Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Plant Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Dorm</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Family and Graduate</td>
<td>4</td>
</tr>
<tr>
<td>Dining</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Recreational</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>
grade paper (4%), aluminum and tins cans (2%), mixed recyclable paper (2%), and newspaper (1%) make up a total of 30% of the volume of the MSW stream. By weight, these same recyclable categories make up 19% of the MSW stream. All of these materials could be diverted from landfilling through recycling or reduction efforts.

Table 4.2. Results of the Phase 1 waste audit.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Weight (lbs)</th>
<th>Weight %</th>
<th>Volume (gal)</th>
<th>Volume %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Newspaper</td>
<td>28</td>
<td>1%</td>
<td>54.9</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Corrugated Cardboard</td>
<td>148.1</td>
<td>3%</td>
<td>691.2</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>High Grade</td>
<td>204.6</td>
<td>5%</td>
<td>384.3</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Mixed Recyclable</td>
<td>104.4</td>
<td>2%</td>
<td>143.3</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Boxboard</td>
<td>113.5</td>
<td>3%</td>
<td>582.3</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Composites/ Other</td>
<td>208.7</td>
<td>5%</td>
<td>805.5</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>807.3</td>
<td>18%</td>
<td>2661.5</td>
<td>26%</td>
</tr>
<tr>
<td>Plastic</td>
<td>#1-7 Pourable</td>
<td>157.6</td>
<td>4%</td>
<td>770.4</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>#1-7 Other (nonpourable, nonfood)</td>
<td>101.1</td>
<td>2%</td>
<td>472.1</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Food Service</td>
<td>104.2</td>
<td>2%</td>
<td>766.8</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Nonfood EPS</td>
<td>34.9</td>
<td>1%</td>
<td>291.8</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Films</td>
<td>331.9</td>
<td>8%</td>
<td>1525.5</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Rigid Plastic/Other</td>
<td>106.5</td>
<td>2%</td>
<td>199.8</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>836.2</td>
<td>19%</td>
<td>4026.4</td>
<td>40%</td>
</tr>
<tr>
<td>Metal</td>
<td>Aluminum & tin cans</td>
<td>75.2</td>
<td>2%</td>
<td>221.9</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Scrap Metal/ Other</td>
<td>57.8</td>
<td>1%</td>
<td>123.8</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>133</td>
<td>3%</td>
<td>345.8</td>
<td>3%</td>
</tr>
<tr>
<td>Glass</td>
<td>Total</td>
<td>177.8</td>
<td>4%</td>
<td>88.6</td>
<td>1%</td>
</tr>
<tr>
<td>Organics</td>
<td>Food Waste</td>
<td>974.7</td>
<td>22%</td>
<td>517.5</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Compostable / Soiled Paper</td>
<td>628.2</td>
<td>14%</td>
<td>1584</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>Animal & Human Byproducts</td>
<td>75.6</td>
<td>2%</td>
<td>120.6</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Yard Waste</td>
<td>69.8</td>
<td>2%</td>
<td>109.1</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1748.3</td>
<td>40%</td>
<td>2331.2</td>
<td>23%</td>
</tr>
<tr>
<td>Products</td>
<td>Total</td>
<td>339.8</td>
<td>8%</td>
<td>388.6</td>
<td>4%</td>
</tr>
<tr>
<td>Residuals</td>
<td>Solids</td>
<td>126.5</td>
<td>3%</td>
<td>172.1</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Free liquids</td>
<td>200.1</td>
<td>5%</td>
<td>36.2</td>
<td>0.4%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>326.6</td>
<td>7%</td>
<td>208.3</td>
<td>2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4369</td>
<td>100%</td>
<td>10050</td>
<td>100%</td>
</tr>
</tbody>
</table>
Figure 4.9 compares the contributions of each category to the MSW stream by weight versus by volume. While organics make up over 40% of the weight of the MSW stream, this category contributes less than a quarter of the volume of the waste stream. Conversely, while plastic comprises less than a quarter of the weight of the waste stream, this category makes up of 40% of the total volume. Weights were determined by weighing the waste on a scale with precision to one tenth of a pound. Volumes were determined by filling 18 gallon recycling bins and 5 gallon buckets with each waste to estimate a total volume in gallons. Empty containers such as bottles and cans were neither collapsed or crushed before determining volume, but rather, were left in the state in which they were found.

![Figure 4.9](image.png)

Figure 4.9. (A) Contribution by weight of each MSW category as determined during Phase I. (B) Contribution by volume of each MSW category as determined during Phase I.

4.4 Phase II: Aggregated MSW Samples

Phase II waste composition analyses occurred at the Leveda Brown Transfer Station in Gainesville, FL. There were 43 subcategories used during the Phase II sorts, twice the amount used in Phase I sorts. The weight of the samples in Phase II ranged from 219 lbs to 330 lbs, as opposed to the approximately 100 lb samples in Phase I. The samples in this phase were collected and sorted at the Leveda Brown transfer station in Gainesville. Only weight was determined during this sort.

To gather samples for Phase II, selected trucks which service campus routes unloaded their waste on the tipping floor. Truck number, substream, and approximate route location were recorded on the data collection sheet (see Appendix C). The sample was visually inspected for hazardous materials and then mixed with a front-end loader. A representative fraction of 200 – 300 lbs was obtained for waste composition analysis.

In the Phase II sorts, organics (29%) comprised the largest fraction of MSW, followed by plastics (23%), paper products (20%), other (16%), C&D (4%), metal (4%), glass (2%), durable (2%), and hazardous waste (0.04%). The results of Phase II are summarized in Table 4.3.
Organic waste made the largest contribution by weight to the MSW stream in Phase II, just as it did in Phase I. Food and soiled paper made up 94% of this category; this amounts to 28% of the total sampled waste stream. Plastic and paper followed organics with the second and third largest contributions by weight, respectively, in both phases.

Table 4.3. Results of Phase 2 waste audit.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Weight (lbs)</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Products</td>
<td>Cardboard</td>
<td>77.4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Newspaper</td>
<td>32.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Office Paper</td>
<td>70.8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Junk Mail</td>
<td>26.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pasteboard</td>
<td>37.8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Misc. Paper</td>
<td>34.6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aseptic Cartons</td>
<td>41.7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>321.1</td>
<td>20</td>
</tr>
<tr>
<td>Organics</td>
<td>Food & Soiled Paper</td>
<td>440.4</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Yard Trash</td>
<td>8.3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Diapers</td>
<td>21.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>470.3</td>
<td>29</td>
</tr>
<tr>
<td>Glass</td>
<td>Clear Glass</td>
<td>17.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Brown Glass</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Blue & Other Glass</td>
<td>6.7</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25.7</td>
<td>2</td>
</tr>
<tr>
<td>Metal</td>
<td>Aluminium Cans</td>
<td>11.9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tin/Steel Cans</td>
<td>11.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Non-Ferrous Metal</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ferrous Metals</td>
<td>8.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>56.1</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td><2" Fines</td>
<td>148.4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td><1" Fines</td>
<td>37.1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Textiles</td>
<td>50.7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Liquids</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>258.2</td>
<td>16</td>
</tr>
<tr>
<td>Plastics</td>
<td>PET, HDPE</td>
<td>60.4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PVC/LDPE/PP/PS/Other</td>
<td>90.2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Plastic Film</td>
<td>174.4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>17.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other Rigid Plastic</td>
<td>30.6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>373</td>
<td>23</td>
</tr>
<tr>
<td>C&D Debris</td>
<td>Carpet</td>
<td>25.6</td>
<td>2</td>
</tr>
<tr>
<td>Material</td>
<td>Quantity</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Concrete & Rock</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Asphalt Shingles</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dimensional Lumber</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>35.3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Composite Wood</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rubber</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fiberglass Insulation</td>
<td>3.7</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Other C & D Debris</td>
<td>2.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx/Needles</td>
<td>0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>Paint/Aerosol</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>Batteries</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mercury Wastes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Automotive Parts</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.7</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Durable

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Appliances</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small Appliances</td>
<td>25.8</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>25.8</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1598</td>
<td>100</td>
</tr>
</tbody>
</table>
4.5 Results by Generation Point

To best understand how to reduce waste on campus, it is crucial to understand how waste differs between locations with varying purposes. The results of the Phase I sort are displayed by generation categories in Table 4.4. It is important to view the data in this way, because the trends observed when taking the results as a whole do not necessarily represent the trends in the various campus sources.

In both Phase I and Phase II, organics represented the largest portion of the MSW, comprising over 40% of the waste stream while the next largest component, plastic, made up less than 20% of the waste stream. This trend is evident in housing, academic and administrative buildings, but not so in the other categories. In the medical category, organics made up only 25% of the waste stream, compared to plastic at 35%. Plastic also rivals organics in the dining hall sample, with plastic making up 36% of the waste stream, a slightly smaller contribution than organics (37%). In the recreational category, paper (25%) has the largest contribution, followed closely by organics (24%). When considering implementation of waste reduction plans, these differences in generation must be considered to make the most effective reductions throughout campus.

Overall, the largest contributors to the waste stream are housing and academic buildings. In both of these categories, organics, paper and plastics together make up over three quarters of the respective waste streams. If composting and recycling were made more widely available and encouraged in these areas, a large amount of the MSW currently produced at UF could be diverted from landfills.

Table 4.4 UF MSW generation by generator type

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Paper</th>
<th>Plastic</th>
<th>Metal</th>
<th>Glass</th>
<th>Organics</th>
<th>Products</th>
<th>Misc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>Housing Total</td>
<td>15%</td>
<td>15%</td>
<td>4%</td>
<td>6%</td>
<td>45%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Undergraduate Residence</td>
<td>18%</td>
<td>17%</td>
<td>2%</td>
<td>5%</td>
<td>42%</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Greek Housing</td>
<td>9%</td>
<td>14%</td>
<td>9%</td>
<td>8%</td>
<td>49%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Family & Graduate Housing</td>
<td>13%</td>
<td>12%</td>
<td>3%</td>
<td>7%</td>
<td>51%</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Academic</td>
<td>Academic Total</td>
<td>22%</td>
<td>21%</td>
<td>2%</td>
<td>3%</td>
<td>40%</td>
<td>5%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Animal Lab</td>
<td>38%</td>
<td>11%</td>
<td>2%</td>
<td>3%</td>
<td>32%</td>
<td>12%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Plant Lab</td>
<td>18%</td>
<td>13%</td>
<td>1%</td>
<td>2%</td>
<td>59%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>10%</td>
<td>24%</td>
<td>1%</td>
<td>3%</td>
<td>52%</td>
<td>0.3%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>20%</td>
<td>23%</td>
<td>2%</td>
<td>3%</td>
<td>39%</td>
<td>4%</td>
<td>9%</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td>19%</td>
<td>22%</td>
<td>1%</td>
<td>3%</td>
<td>44%</td>
<td>2%</td>
<td>8%</td>
</tr>
<tr>
<td>Dining</td>
<td></td>
<td>13%</td>
<td>36%</td>
<td>2%</td>
<td>0%</td>
<td>37%</td>
<td>3%</td>
<td>9%</td>
</tr>
<tr>
<td>Recreational</td>
<td></td>
<td>25%</td>
<td>20%</td>
<td>4%</td>
<td>0%</td>
<td>24%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td>15%</td>
<td>35%</td>
<td>1%</td>
<td>1%</td>
<td>25%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td>22%</td>
<td>23%</td>
<td>5%</td>
<td>1%</td>
<td>27%</td>
<td>17%</td>
<td>5%</td>
</tr>
</tbody>
</table>
4.6 Results by Waste Type

Figure 4.10 depicts the total estimated waste stream breakdown at UF using a combination of data furnished by PPD and the results of the MSW composition study. The amounts of C&D, medical, hazardous wastes, and recycled materials were taken from the data provided by PPD. The amount of MSW was split up using percent contributions determined in the MSW composition study. Based on this figure, the five largest contributors to the waste stream are recycled yard waste (22%), organics disposed in MSW (21%), recycled paper (11%), plastic disposed in MSW (10%), and paper disposed in MSW (10%). It is clear from the MSW composition study, that UF’s MSW stream could be impacted most significantly by the diversion of organics, plastics, and paper products. Since landfill tipping fees are derived from weights, such reductions could result in a substantial decrease in landfilling costs.

Figure 4.10: Comprehensive diagram of the waste stream generated by the University of Florida. Details on MSW composition were determined through the MSW study discussed in this chapter, while information on recycling, medical waste, hazardous waste and C&D were furnished by UF PPD
5 Discussion

5.1 Comparison to National, State and County Progress & Goals

The MSW generation and recycling totals for the years 2009-2012 are displayed in Table 5.1 for national, state, county and university levels. At the state and county levels, Florida and Alachua County were examined respectively, as that is where the University of Florida is located. Over the course of a four-year period, the percent recycling rate is lowest at the national level at just 25.9%. The state of Florida had a 31.4% recycling rate over the same period, beating the national average by over 5%. Furthermore, Alachua County has the highest recycling rate of the four, with over half of its MSW recovered through recycling. The University of Florida, however, falls just short of this with a recycling rate of 46.8% during the four-year period. It should be noted that UF’s recycling rate peaked at 59.8% in 2010 due to masonry recovery associated with new construction during that year. This peak was the highest recycling rate seen over the four-year period between all four levels examined.

In 1988 Florida passed a recycling goal of 30%; however, more than two decades later in 2010, Floridians were still only recycling 28% of their solid waste. In 2008, the Florida Legislature established a 75% recycling goal to be achieved by the year 2020 through The Energy, Climate Change, and Economic Security Act. The Florida Department of Environmental Protection plans to make the current 75% recycling rate goal a reality by focusing more on C&D recycling, organic waste recycling, waste-to-energy, and commercial recycling. Some programs suggested for achieving this goal are instituting Zero Waste Zones and Single Stream Recycling in various markets; instituting “Pay-As-You-Throw” and RecycleBank incentives in high population areas; and requiring state offices and university buildings to adopt a “one ton a year” goal (FDEP, 2010a).

Alachua County has also adopted a “Strive for 75” goal in the spirit of the statewide goal. To achieve this goal, the county has set smaller goals every two years as follows: 50% recycling by December 31, 2014; 60% recycling by December 31, 2016; 70% recycling by December 31, 2018; and finally, 75% recycling by December 31, 2020 (Alachua County Public Works, 2014).
Table 5.1 Comparison of national, state, county and university level recycling rates

<table>
<thead>
<tr>
<th>Year</th>
<th>United States</th>
<th>Florida</th>
<th>Alachua County</th>
<th>University of Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total MSW (Million tons)</td>
<td>Recycled (Million tons)</td>
<td>% Recycled</td>
<td>Total MSW (Million tons)</td>
</tr>
<tr>
<td>2009</td>
<td>244.3</td>
<td>61.6</td>
<td>25.2</td>
<td>28.77</td>
</tr>
<tr>
<td>2010</td>
<td>250.4</td>
<td>65.0</td>
<td>26.0</td>
<td>26.90</td>
</tr>
<tr>
<td>2011</td>
<td>250.4</td>
<td>66.3</td>
<td>26.5</td>
<td>26.67</td>
</tr>
<tr>
<td>2012</td>
<td>251.9</td>
<td>65.3</td>
<td>26.0</td>
<td>27.88</td>
</tr>
</tbody>
</table>

5.2 Comparison to other Universities’ Waste Programs

The University of Colorado at Boulder, similar in size to the University of Florida, has also completed a waste composition in recent years and was among the first to begin an on-campus recycling program. Currently, UC Boulder’s recycling efforts cover everything from residence hall tips and programs, composting in dining and residence halls as well as offices and restrooms, and incoming student and staff orientations – leading to a 43.7% diversion rate for the 2012-2013 year (University of Colorado Environmental Center, 2014).

The University of California Davis also boasts an impressive program, with disposal service events, a Game Day Challenge (which focuses on diversion efforts in their football stadium), and RecycleMania (which focuses on recycling efforts at a campus level during the winter academic quarter). Most campus eateries utilize compost bins, as do the four residential dining halls, to divert organic waste. Residents in on-campus housing have the option of collecting their own compost materials in their rooms and dropping them off at centrally located bins, as well in the zero-waste offices. Furthermore, UC Davis enables students and staff to request recycling bins (University of California Davis, 2014).
6 Observations and Recommendations

The purpose of the UF MSW composition study is to find areas where the campus can improve upon current practices to achieve the campus wide zero waste goal by the 2015 target. Using information gathered in Phase I and II of the study, diversion opportunities have been laid out by waste type and waste source.

6.1 Implications and Opportunities by Waste Type

6.1.1 Organic Waste

Organic waste was the most prominent category by weight found in both Phase I and II of the MSW composition study. While a sizeable portion of organic waste is now diverted from landfil(ling through composting at dining halls, large amounts are still produced in nearly all other buildings around campus. This organic waste often includes scraps from meals eaten outside of dining halls, coffee grounds and tea bags, expired food from vendors, and compostable napkins and paper towels - largely because it was oversaturated with organics and could not be put into a different category. Whole packages of unopened, unspoiled, and sometimes non-perishable, food are regularly disposed of.

Pre-consumer composting has been successful at dining halls, where staff separate compostable and non-compostable wastes. A challenge to instituting composting receptacles campus-wide would be educating the campus population about what should be placed in these containers. It would also be beneficial to institute some kind of collection system throughout large buildings, similar to what is done now with small paper or plastic recycling bins. These small bins reside in rooms throughout buildings with its contents disposed of in larger recycling dumpsters, aiding in encouraging recycling by making it more accessible. If emptied daily to avoid malodor, such bins may have similar effects on composting.

Another way to reduce the organic waste stream would be to encourage donation of unwanted, unspoiled foods and beverages. Packages of non-perishable food could be donated to a local food pantry. Perishable, but unspoiled, food can also be donated at several locations throughout Gainesville. For instance, several unopened, unspoiled, packaged meals were found in one load of trash from a vendor on campus, which could have easily been donated. By donating instead of disposing food, UF would not only be one step closer to its zero waste goal, but would be doing a service to the surrounding community as well.

6.1.2 Plastic

The second largest category by weight, campus-wide, was plastic waste. Although there are large amounts of recycling receptacles around campus, recyclable plastic was still a common find in both Phase I and Phase II waste sorts. This suggests that the campus population is either uneducated about current recycling programs or is unmotivated to recycle.
Bottles, jugs, jars and tubs with the resin identification code numbers 1-7 are recyclable in the city of Gainesville. However, it must be remembered that other plastic items which are #1-7 are not. Plastic cups (RIC #6) are currently not recycled within the city, though they are commonly used on campus.

Motivating the campus population about both recycling and reduction is key. Many food vendors around campus offer discounts on fountain drinks when a customer uses a reusable bottle instead of a disposable cup from the vendor. Unfortunately, lines at food vendors tend to grow very long at peak times of the day, such as breaks between classes, or during special events such as orientation. Due to this, students may gravitate towards vending machines, which are placed throughout campus and typically have far shorter wait times. Advertising recycling at or around these vending machines may be beneficial. The University is also looking into adding take-back provisions in upcoming contracts.

6.1.3 Paper products

Paper products was the third largest category by weight in both Phase I and Phase II, as well as the second largest category by volume in Phase I. Most types of uncontaminated paper are recyclable on campus, making this category an easy target for reduction in the MSW stream. Paper products found during waste composition studies included class notes, fliers, magazines, office and fax paper, junk mail, boxboard, and corrugated cardboard, among other items such as laminated advertisements and business cards.

One way to reduce the amount of paper needed on campus is to encourage online submission of assignments and documents. While online submissions are accepted in many classes, there are still many that require assignments to be submitted either on paper, or both on paper and online. For annotated assignment returns, there are many programs that allow professors and TAs to make these notes digitally. Online submission has been successful with regards to teacher evaluations, eliminating 850 lbs. of paper and saving approximately $6,500 for the fall 2014 semester alone.

Paper that cannot be eliminated from the MSW stream by reduction should be recycled whenever possible. Many classroom buildings are already equipped with one or more paper recycling bins within the buildings. Paper recycling bins should be expanded to large classrooms. Similarly, rooms in residence halls typically come with one trash bin and one recycling bin, though this does not necessarily mean that students use the two bins for their intended separate purposes. Education on what types of paper are recyclable could aid in motivating people to make the most of these bins. Any office or classroom areas found to be lacking in paper recycling bins should be provided with them, especially the larger lecture halls.

6.1.4 Other Recyclables

While aluminum cans do not weigh much individually, large amounts may contribute a significant amount of weight and can take up large volumes in MSW if
not crushed. These cans are valuable, making them a ready target to remove from the waste stream.

Alternatively, glass is very heavy, though it may not take up much volume. However, this stream only made up 4% of the waste in Phase I by volume and 2% of the waste in Phase II by weight. Therefore, it may not be a priority over other more common waste streams.

Some items, such as plastic wrappers or metallic packaging, are traditionally difficult to recycle. These types of items were seen frequently in MSW sorts. UF had a TerraCycle program that allowed for recycling of previously non-recyclable or hard-to-recycle waste, but has since been discontinued. Examples of items accepted through TerraCycle include drink pouches, candy bar wrappers and other food and commodity packaging. PPD is continually searching for new markets for hard-to-recycle products.

6.1.5 Residuals

Fine materials that fell through the screen of the table to the tarp below were collected as miscellaneous solid waste. Liquids were also collected in a bucket and weighed. These two were categorized as either solid or liquid residuals. The liquids were primarily separated from their containers to avoid skewing the weight data with a full container.

The recovery options for solid residuals are limited due to the variety of components found in this category. Items found in solid residuals covered practically every larger waste category, containing items such as bits of food, shreds of paper, small plastic wrappers, nails and other small metal hardware, and glass shards. Separating the residuals category would take more time, money and energy than any recovery of these materials would be worth. Similarly, there are few options for the recovery of liquids. Typically, once waste is compacted, the liquid containers are crushed, releasing the liquid into the surrounding waste. The only viable option for reduction of this category is source reduction.

6.2 Implications and Opportunities by Waste Source

6.2.1 Housing

While a large amount of organic waste was found in all three of the housing categories, organic was particularly high in family & graduate housing and Fraternity and Sorority housing. Family & graduate housing options typically include kitchens in each apartment, which make cooking at home more appealing than in it is in community style undergraduate residence halls, where many residents opt to eat their meals at dining halls. Similarly, it is traditional for members of fraternities and sororities to dine at their organization’s house. Therefore, food scraps from meal preparation and unwanted leftovers are generated and disposed of at the house, instead of the individual members’ homes. Fraternity and Sorority social and service events where food is served may also generate large
amounts of food waste. Making composting more readily available at these locations could make a large impact on the MSW stream.

Furthermore, Greek housing generated the largest proportions of metal and glass of any category examined in this study. A majority of this metal consisted of aluminum cans which could easily be recycled and therefore diverted from the landfill. Similarly, virtually all of the glass consisted of recyclable glass bottles. When the research team visited dumpsters at Greek housing to collect waste samples, fewer container receptacles were available than paper recycling bins or waste containers. Increased availability of these receptacles could help eliminate the recyclable materials from the MSW stream. Programs similar to current water conservation challenges between Greek houses could be expanded to include recycling as well.

6.2.2 Academic

The MSW sampled from plant labs and the library contained the largest and second largest proportions, respectively, of organic waste of all of the categories examined. It should be noted that Library West, which contains a 24-hour Starbucks, was sampled for the library category. With the construction of a new Starbucks at Marston Science Library currently underway, it can be assumed that the sample taken at Library West likely represents what the Marston waste stream will look like in coming years. A large amount of the organic waste produced at the library consisted of coffee grounds and pre-packaged meals from the Starbucks. Some diversion of this waste could be achieved if the coffee grounds could be used as fertilizer in local gardens, while any unspoiled pre-packaged meals could be donated to local shelters. While some composting was noted at IFAS greenhouses, more widespread composting efforts could be made at plant and animal labs throughout campus.

It is noteworthy that the library sample had the second smallest proportion of paper waste of any of the categories sampled. This can likely be attributed to the widespread availability of paper recycling receptacles throughout the library. However, animal labs had the largest proportion of paper waste of any category sorted. A large amount of this waste was derived from old corrugated cardboard (OCC) contaminated with animal blood found when the research team sampled the IFAS Meat Lab & Retail Sales unit. Due to contamination, this OCC is not viable for traditional cardboard recycling, and therefore was correctly disposed of in MSW.

6.3 Recommendations
6.3.1 Communication and Outreach

It is important that when students, faculty or staff begin their careers at UF that the university’s zero waste goal is effectively communicated to them so that they can take an active role in making this goal a reality. This can be briefly communicated during orientation or other introductory training.

For incoming freshmen, introduction to the zero waste effort should be introduced at Preview. First Year Florida should require one class day to discuss
this program. Incoming graduate students would also be introduced during their respective orientations.

Reminder messages can also be posted in areas such as printing labs or around vending machines where someone might rethink a choice, such as printing a large document that they could go without, or buying a couple of bottles of soda instead of using a refillable cup at an attended register.

It is key to communicate expectations and goals not only with students, faculty and staff, but also with visitors to campus. Small recycling reminders or a zero-waste goal logo can be placed on campus maps and other materials commonly given to visitors. Volunteer initiatives such as the Green Team’s tailgate recycling program help communicate recycling goals to visitors as well during home football games. This kind of outreach is particularly helpful because not only do the volunteers communicate the goal of recycling, but they also provide each tailgater with one or more bags to separate their recycling from the rest of their trash.

6.3.2 Education

Educating students, faculty and staff on the purpose and details of the zero waste goal could go a long way in motivating them to be more conscious of their own waste production and disposal. Educational poster materials placed in residence hall common rooms and halls in classroom buildings could catch the attention of students. Such posters could include a pictorial list of items that are accepted for recycling on campus, and quick tips on reducing the amount of waste that they produce.

Other educational avenues include tabling style set-ups, such as the Sustainability Hut. The Sustainability Hut moves from place to place on campus in an effort to educate the campus community on a variety of sustainability issues, including waste production, as well as reduction tips. The Hut and its volunteers also participate in tabling for Preview and “Green Games.” The former is a mandatory two-day orientation for incoming freshman, while for the latter the Hut chooses a game in a sport’s season to educate game goers as well as sort and weigh accumulated waste.

6.3.3 Spatial Identification

It is important to place trash and recycling receptacles in highly trafficked areas. It is also helpful to have a nearly 1:1 ratio of trash to recycling bins. This encourages recycling by ensuring that it is just as easy to recycle waste as it is to landfill it.

6.3.4 Expanding recyclable materials

The recyclable materials accepted on campus are currently determined by what is accepted by the City of Gainesville. This means that plastic containers other than bottles, jugs, jars and tubs are not accepted for recycling. Plastic films are
currently not recycled on campus and generate a significant fraction of the MSW stream by volume.

7 Conclusion

The 2014 UF Waste Composition study was performed to understand how the MSW stream has changed since the previous study, conducted in 2009. UF has since implemented several new recycling programs, now has a single waste hauler for MSW, and has expanded public access to recycling bins throughout campus. Overall recycling rates have increased since 2009, with UF currently diverting 44% of MSW from the landfill.

The MSW stream still contains significant fractions of compostable and recyclable materials. Food waste and soiled paper are the largest categories of waste generation by weight. Expanded composting efforts would significantly decrease the amount of waste sent to the landfill. Paper constitutes 20% of the current MSW stream, much of which is currently recyclable in Alachua County. Educating students, faculty, and staff to recycle these materials would increase diversion from the landfill, and can be accomplished with the current recycling bins. Plastics represent a large fraction of MSW by volume, but less so by weight. Polystyrene products (Styrofoam™) and other plastic bags and films consume large amounts of space but do not add considerable weight. PET and HDPE bottles (soda bottles, and detergent bottles) are recyclable but are found throughout the waste stream. Other plastics are less commonly recycled and will be more challenging to find vendors for these materials. Small durable goods or mixed material products (microwaves, irons, etc.) are not common in the waste stream, but are generated in large quantities during dorm move-outs. Collection events could capture these bulky, dense items and divert them from the waste stream. Small amounts of glass and metals were found in the waste stream and are currently recyclable in Alachua County. The screen sorting table used in this study created two fractions of residual materials that contained a mix of biodegradable (food scraps and paper) and non-biodegradable materials. This residual fraction of waste has little value for recycling and would be too contaminated with other debris for composting. Residuals currently make up 11% of the MSW stream but will decrease every time a waste component is removed from the waste stream.

Education and expanded recycling efforts would divert large fractions of the current MSW stream from the landfill. Examining purchasing policies and packaging materials could help to decrease generation of items that currently have no recycling potential. With these tactics, UF can achieve its zero waste goal.
8 Acknowledgements

The authors wish to thank the many people involved in this project. The help and assistance of Joseph Floyd, Dale Morris, Liz Storn and Taylor Cremo were vital to the success of this study. Additional thanks to the UF Waste Stakeholders Committee for reviewing the report, providing comments and feedback, and furthering the zero waste initiative at UF. Thanks also go to David Woods and Sally Palmi who provided use of the Leveda Brown Transfer Station tipping floor and personnel to conduct the Phase 2 study.
9 References

Appendices

A Methods and Safety

A.1 Safety Protocol

Campus Sort Safety Plan

Objective of this Plan
This plan is to be followed during campus waste sorts to protect the health and safety of every member of the team. The prevention of occupationally-induced injuries and illnesses is a high priority during sorts. The research team will provide industry standard equipment, training, and physical facilities necessary for maintaining the personal safety and health of members of the research team. It is the responsibility of each and every participant in a sort to contribute to each worker’s health and safety, including his or her own.

Standard Operating Procedures
The basic procedure for sorters begins with removing a portion of the contents from specified MSW containers on campus and relocating them to the sorting area. At the sorting area the load will be examined by a trained member of the research team for red bag medical waste, hazardous waste, infectious waste, or sharp objects including broken glass or needles. These items should not be found in campus MSW, but it is necessary to check to ensure that they were not improperly disposed of in the inspected MSW containers. This pre-sort is crucial in ensuring site health and safety. When the pre-sort is completed, members of the research team will identify different materials in the MSW that has been placed on a tarp or sorting table, then place the materials in their nearby respective containers. After the material is sorted a member of the research team will weigh the containers. At this point, that sort is considered finished, and the next sample will be brought to sort.

Safety Equipment
Each participant will have access to the following items both at the MSW container and the sorting site:

• Protective clothing
• First aid kit
• Water supply

Site Supervisor
For each sort, a member of the research team will be designated as the Site Supervisor. It is the responsibility of the Site Supervisor to bring a copy of this Safety Plan to the site to ensure that the plan is followed to protect all members participating in the sort. The supervisor is also responsible for the pre-sort, which is to occur before the other sorters come into contact with the waste. Other sorters may not approach the area where unexamined waste samples are being stored or examined. In the event of a spill of hazardous material from a sample, the supervisor
is responsible for calling the appropriate authorities and remaining at the site until the authorities arrive and deal with the situation.

Assistant Supervisor

For each sort, a member of the research team will be designated as the Assistant Supervisor. The assistant supervisor will assist the site supervisor as necessary, as well as act on the behalf of the supervisor when the supervisor is unavailable. The focus of the assistant supervisor’s role is to facilitate the sorting process for the sorting crew.

Personal Protective Clothing

MSW is not considered to be a hazardous material by definition, but it may contain items or substances that may pose a threat to a sorter when encountered in close range, picked up by hand, or when they are mixed with other waste materials. Because of this, each participant in the sort should be wearing the following:

- Full length, sturdy pants
- Close toed shoes (steel-toed boots are suggested)
- Nitrile gloves
- Leather driving gloves (over the nitrile gloves)
- Safety glasses or goggles, or prescription safety glasses
- White Tyvek full-piece suit (optional)

Pre-sorting Protection

During the pre-sort, the supervisor is to wear all of the above listed personal protective clothing, as well as a dust mask. Only the supervisor or assistant supervisor will carry out the pre-sort.

Heat Stress

The following are First Aid procedures for conditions caused by hot and cold temperature extremes that may be aggravated by required personal protective equipment:

Heat Exhaustion

Caused by: Prolonged hot spell, excessive exposure, physical exertion

Symptoms: Profuse sweating, weakness, dizziness, and sometimes heat cramps; skin is cold and pale, clammy with sweat; pulse is thread and blood pressure is low. Body temperature is normal or subnormal. Vomiting may occur. Unconsciousness is rare.

First aid: Move to a cooler environment. Provide rest and a cool drink of water or a beverage with electrolytes. Seek medical attention if the symptoms are severe.

Heat Stroke (Heat Collapse)
Caused by: Failure of the body to regulate its temperature because excessively warm weather and physical exertion has depleted it of fluids needed to perspire.

Symptoms: 1. Weakness, dizziness, nausea, headache, heat cramps, heat exhaustion, excessive sweating; skin flushed and pink
2. Sweating stops (usually) and body temperature rises sharply. Delirium or coma is common; skin changes from pink to ashen or purplish

First aid: Immediate medical care is needed; heat stroke is very serious. The body must be cooled soon. Move the victim to a cooler place, remove protective clothing, and bathe in cold water. Use extreme care and frequently check ABCs (airway, breathing, and circulation) if the person is unconscious.

MSW Handling Procedures

Lifting

When shoveling garbage onto the tabletop, sorters will be reminded not to load the shovel with more weight than they can comfortably lift. The following tips will be used when lifting:

- Maintain the three natural curves of the spine by keeping the head high, chin tucked in, and back arched.
- Bend hips and knees.
- Use the diagonal lift (one foot ahead, one foot behind) to get the weight in close and maintain a wide, balanced base of support.
- Keep abdominal muscles tight when lifting to help support the back.
- Keep the load close to the body and stand up straight. Keep head up.
- Avoid twisting while lifting. Pivot after lifting, if changing direction.
- Avoid lifting anything heavy above the shoulders.

Procedure for Handling Hazardous Wastes

The MSW composition study procedure has been designed so that sorters are not exposed to mixed MSW that has not been first screened for hazardous or infectious waste. These materials are defined and appropriate actions are outlined for each:

Hazardous:

Materials that were improperly disposed of in MSW; e.g., radioactive waste, toxic chemicals, explosives. Note that these materials should not be found in campus waste, this is just a standard safety precaution.

If found: If the pre-sorters should miss a hazardous waste item in a waste sample and it is brought to the waste table and found, work should immediately stop and the area should be carefully cleared. The entire waste sample will be rejected and removed and, depending upon the nature of the hazardous item, the site supervisor will see to the proper disposal action or will call the appropriate emergency agency.
Infectious waste:

Solid waste that might be able to transfer disease or infection to another person; e.g., extremely bloody medical items, syringes, or an indiscriminately discarded biomedical bag. These biomedical bags are often red in color and they have “infectious waste” or the biomedical symbol printed on them. These materials should also be separated from the campus MSW stream. Again these items are considered as a safety precaution.

If found: If a hospital or veterinary bag or similar medical waste is found, work will be stopped and the supervisor will be notified to remove the waste from the table. Single syringes are quite common in mixed MSW. If a syringe is found, the sorter who finds it should announce the finding to the other workers at the table. The sorter will then move the syringe to the appropriate container.

Emergency Contingency Plan

The site supervisor will be the emergency coordinator. The assistant supervisor will be the emergency in the event that the supervisor is not available. The site supervisor is responsible for understanding and complying with the facilities’ emergency contingency plan and will follow site procedures.

Summary

The site supervisor will follow the health, safety, and training procedures specified in this plan. All sorters will be familiar with the policy and procedures specified in the plan prior to initiating the sorting events.

Emergency numbers:

In a medical emergency, call 911

Information & Reporting

- UF PPD - (352) 392-1121
- Chemical & Radioactive Waste Disposal – (352) 392-8400
- Biological Safety Office – (352) 392-1591
- Radiation Safety Office – (352) 392-7359
- Poison Information Center – (800) 222-1222
- Environmental Health & Safety Directory – (352) 392-1591
A.2 Phase I Methodology

Standardized Procedure

Before beginning: Review procedure, safety plan, and sort categories (next page). Pack truck with necessary materials (include a stool/ladder in case opening is too high). Label sorting containers. Designate camera/student to take pictures during the procedure.

At dumpster:
1. Locate dumpster. Note date, time, start time, location, and campus category on Log sheet. Note fullness of dumpster in observations. Note general appearance of waste: (Just bags? Cardboard?, etc.)
2. Take one bag out, estimate the weight, and place on the ground. The same student will take out appropriate number of bags/unbagged waste to total in about 100 lbs. of waste. Student will make sure that the bags and waste removed are representative of the entire contents of the dumpster after their initial visual assessment.
 • If opening to dumpster is too high to reach, prop up ladder and climb to top of dumpster. If necessary, climb into dumpster, after visually assessing to make sure no sharp or hazardous objects are exposed.
3. Carefully transfer selected sample to truck.

Transfer:
4. Spread tarp out on ground at the sorting site. Tare weight and station sorting containers.
5. Remove bags from truck, weigh each bag and record weights on sort sheet, and place next to the sorting tarp.
6. Open one bag, and before emptying onto the tarp, visually assess contents of bag for hazardous or infectious material, red bag waste, or improperly disposed chemicals.
7. Empty one bag’s contents onto tarp, and spread with rake. Again, visually assess for hazardous/infectious material.

Sort:
8. Sorters remain stationed at a single position near the tarp and sort for the family of materials identified on the bins nearest their location.
 • To avoid being cut or receiving a puncture wound, pick up items gingerly from the surface of the waste on the sorting table.
 • Pass materials in other categories to fellow workers nearer those bins. Throwing or tossing the garbage is not allowed.
 • Continue to look for hazardous items that could be in the waste, with special attention to the potential presence of sharps.
9. Repeat steps 6-8 for each bag until all waste has been sorted from the bags.

Data Collection:
10. Tare scale with weight of bin. Weigh bin+sample and record on sort sheet.
11. Assess volume of sample by estimating how full the bin of known volume is. Record volume on sort sheet.

Cleanup:
12. Re-bag waste and transfer to nearest dumpster.
B Phase I

B.1 PPD List of Locations

<table>
<thead>
<tr>
<th>locationid</th>
<th>routeid</th>
<th>locdetail</th>
<th>Category</th>
<th>Subcategory</th>
<th>capacity</th>
<th>schedlong</th>
</tr>
</thead>
<tbody>
<tr>
<td>0407-001</td>
<td>CENTRAL CAMPUS</td>
<td>Delta Gamma sorority</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0101-001</td>
<td>CENTRAL CAMPUS</td>
<td>Norman Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0411-001</td>
<td>CENTRAL CAMPUS</td>
<td>Delta Delta Delta Sorority (Share with #415)</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0412-001</td>
<td>CENTRAL CAMPUS</td>
<td>Sigma Kappa</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>TUESDAY, FRIDAY</td>
</tr>
<tr>
<td>0607-001</td>
<td>CENTRAL CAMPUS</td>
<td>Coastal Engrg Lab</td>
<td>Academic</td>
<td>Mixed</td>
<td>4</td>
<td>FRIDAY</td>
</tr>
<tr>
<td>0512-001</td>
<td>CENTRAL CAMPUS</td>
<td>PK Yonge Cafeteria</td>
<td>Dining</td>
<td></td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0657-001</td>
<td>CENTRAL CAMPUS</td>
<td>Delta PHI Epsilon</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0410-001</td>
<td>CENTRAL CAMPUS</td>
<td>Zeta Tau Alpha</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0409-001</td>
<td>CENTRAL CAMPUS</td>
<td>Alpha Delta Pi</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0039-001</td>
<td>CENTRAL CAMPUS</td>
<td>Yulee Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0553-001</td>
<td>CENTRAL CAMPUS</td>
<td>Rawlings Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0553-002</td>
<td>CENTRAL CAMPUS</td>
<td>Rawlings Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0553-003</td>
<td>CENTRAL CAMPUS</td>
<td>Rawlings Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0553-004</td>
<td>CENTRAL CAMPUS</td>
<td>Rawlings Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Campus</td>
<td>Building</td>
<td>Type</td>
<td>Housing</td>
<td>Room</td>
<td>Days</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>0011-001</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall East</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0011-002</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall East</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0011-003</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall East</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0011-004</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall West</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0011-005</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall West</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0011-006</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Hall West</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>1011-001</td>
<td>CENTRAL CAMPUS</td>
<td>Broward Dining</td>
<td>Dining</td>
<td></td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0832-001</td>
<td>CENTRAL CAMPUS</td>
<td>Newins-Zeigler</td>
<td>Academic Mixed</td>
<td></td>
<td>6</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0588-001</td>
<td>CENTRAL CAMPUS</td>
<td>Trusler Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0588-002</td>
<td>CENTRAL CAMPUS</td>
<td>Trusler Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0590-001</td>
<td>CENTRAL CAMPUS</td>
<td>Simpson Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0590-002</td>
<td>CENTRAL CAMPUS</td>
<td>Simpson Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0422-001</td>
<td>CENTRAL CAMPUS</td>
<td>Zeta Beta Tau</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0400-001</td>
<td>CENTRAL CAMPUS</td>
<td>Kappa Alpha</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0423-001</td>
<td>CENTRAL CAMPUS</td>
<td>Delta Chi</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0424-001</td>
<td>CENTRAL CAMPUS</td>
<td>Phi Gamma Delta (FIJI)</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>FRIDAY</td>
</tr>
<tr>
<td>0425-001</td>
<td>CENTRAL CAMPUS</td>
<td>Sigma Chi</td>
<td>Housing</td>
<td>Greek</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0432-001</td>
<td>CENTRAL CAMPUS</td>
<td>Pi Lambda Phi</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Campus</td>
<td>Building</td>
<td>Type</td>
<td>Level</td>
<td>Days</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>-------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>1002-001</td>
<td>CENTRAL CAMPUS</td>
<td>Keys Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1005-001</td>
<td>CENTRAL CAMPUS</td>
<td>Keys Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1007-001</td>
<td>CENTRAL CAMPUS</td>
<td>Keys Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1008-001</td>
<td>CENTRAL CAMPUS</td>
<td>Keys Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1010-001</td>
<td>CENTRAL CAMPUS</td>
<td>Keys Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0421-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lambda Chi Alpha</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY</td>
<td></td>
</tr>
<tr>
<td>1082-001</td>
<td>CENTRAL CAMPUS</td>
<td>Springs Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1083-001</td>
<td>CENTRAL CAMPUS</td>
<td>Springs Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1085-001</td>
<td>CENTRAL CAMPUS</td>
<td>Springs Housing</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0757-001</td>
<td>CENTRAL CAMPUS</td>
<td>Holland Hall</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0757-002</td>
<td>CENTRAL CAMPUS</td>
<td>Holland Law CTR</td>
<td>Administration</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0399-001</td>
<td>CENTRAL CAMPUS</td>
<td>Sigma Nu</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>1049-001</td>
<td>CENTRAL CAMPUS</td>
<td>Baby Gator at Lake Alice</td>
<td>Miscellaneous</td>
<td>Day Care</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0280-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0279-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0277-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0276-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Description</td>
<td>Type</td>
<td>Frequency</td>
<td>Days</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>0288-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>8</td>
<td>TUESDAY, FRIDAY</td>
</tr>
<tr>
<td>0127-001</td>
<td>CENTRAL CAMPUS</td>
<td>Presidents Res</td>
<td>Recreational</td>
<td></td>
<td>2</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0468-001</td>
<td>CENTRAL CAMPUS</td>
<td>Greenhouse</td>
<td>Academic Plant Lab</td>
<td></td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0715-001</td>
<td>CENTRAL CAMPUS</td>
<td>Printing</td>
<td>Miscellaneous</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0705-001</td>
<td>CENTRAL CAMPUS</td>
<td>Central Stores</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>ON-CALL</td>
</tr>
<tr>
<td>0706-001</td>
<td>CENTRAL CAMPUS</td>
<td>Motor Pool</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0703-001</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Bldg Services</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0700-001</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Admin</td>
<td>Administration</td>
<td></td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0702-001</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Maint NE</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0702-002</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Maint SE</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0609-001</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Recycle Yard</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>1181-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lakeside Housing</td>
<td>Housing Dorm</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1182-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lakeside Housing</td>
<td>Housing Dorm</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1183-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lakeside Housing</td>
<td>Housing Dorm</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1184-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lakeside Housing</td>
<td>Housing Dorm</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1185-001</td>
<td>CENTRAL CAMPUS</td>
<td>Lakeside Housing</td>
<td>Housing Dorm</td>
<td></td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0332-001</td>
<td>CENTRAL CAMPUS</td>
<td>University Village</td>
<td>Housing Family and Graduate</td>
<td></td>
<td>6</td>
<td>TUESDAY, FRIDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Campus</td>
<td>Location</td>
<td>Type</td>
<td>Days</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>0321-001</td>
<td>CENTRAL CAMPUS</td>
<td>University Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0365-001</td>
<td>CENTRAL CAMPUS</td>
<td>Maguire Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0372-001</td>
<td>CENTRAL CAMPUS</td>
<td>Maguire Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0385-001</td>
<td>CENTRAL CAMPUS</td>
<td>Maguire Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0392-001</td>
<td>CENTRAL CAMPUS</td>
<td>Maguire Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>8 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0388-001</td>
<td>CENTRAL CAMPUS</td>
<td>Maguire Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>6 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0333-001</td>
<td>CENTRAL CAMPUS</td>
<td>University Village</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>8 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0348-001</td>
<td>CENTRAL CAMPUS</td>
<td>University Village</td>
<td>Storage</td>
<td>Miscellaneous</td>
<td>8 TUESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0255-001</td>
<td>CENTRAL CAMPUS</td>
<td>Bandshell</td>
<td>Recreational</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0255-002</td>
<td>CENTRAL CAMPUS</td>
<td>Bandshell</td>
<td>Recreational</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0255-003</td>
<td>CENTRAL CAMPUS</td>
<td>Bandshell</td>
<td>Recreational</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0417-001</td>
<td>CENTRAL CAMPUS</td>
<td>Alpha Epsilon Phi</td>
<td>Housing</td>
<td>Greek</td>
<td>6 MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0419-001</td>
<td>CENTRAL CAMPUS</td>
<td>Chi Phi</td>
<td>Housing</td>
<td>Greek</td>
<td>4 MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0420-001</td>
<td>CENTRAL CAMPUS</td>
<td>Sigma Alpha Epsilon</td>
<td>Housing</td>
<td>Greek</td>
<td>6 MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0702-003</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Cabinet shop</td>
<td>Miscellaneous</td>
<td>6</td>
<td>ON-CALL</td>
<td></td>
</tr>
<tr>
<td>0428-001</td>
<td>CENTRAL CAMPUS</td>
<td>Zeta Beta Tau</td>
<td>Housing</td>
<td>Greek</td>
<td>4 MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0430-001</td>
<td>CENTRAL CAMPUS</td>
<td>Beta Theta PI</td>
<td>Housing</td>
<td>Greek</td>
<td>6 MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>Campus Code</td>
<td>Campus Location</td>
<td>Building</td>
<td>Purpose</td>
<td>Floor</td>
<td>Days</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>0807-001</td>
<td>CENTRAL CAMPUS</td>
<td>PPD Bullpen</td>
<td>Miscellaneous</td>
<td>8</td>
<td>THURSDAY</td>
<td></td>
</tr>
<tr>
<td>0081-001</td>
<td>CENTRAL CAMPUS</td>
<td>COUNSELING AND WELLNESS CENTER</td>
<td>Administration</td>
<td>4</td>
<td>THURSDAY</td>
<td></td>
</tr>
<tr>
<td>0426-001</td>
<td>CENTRAL CAMPUS</td>
<td>Tau Epsilon PHI</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0431-001</td>
<td>CENTRAL CAMPUS</td>
<td>Alpha Epsilon PI Fraternity</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0287-001</td>
<td>CENTRAL CAMPUS</td>
<td>Corry Village-Commons</td>
<td>Housing</td>
<td>Family and Graduate</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0416-001</td>
<td>CENTRAL CAMPUS</td>
<td>Phi Mu</td>
<td>Housing</td>
<td>Greek</td>
<td>3</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0418-001</td>
<td>CENTRAL CAMPUS</td>
<td>Pi Beta Phi</td>
<td>Housing</td>
<td>Greek</td>
<td>4</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0521-001</td>
<td>CENTRAL CAMPUS</td>
<td>P.K.Yonge -South</td>
<td>Academic</td>
<td>Mixed</td>
<td>4</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0508-001</td>
<td>CENTRAL CAMPUS</td>
<td>CNS Field Station (formerly Agronomy)</td>
<td>Academic</td>
<td>Mixed</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0427-001</td>
<td>CENTRAL CAMPUS</td>
<td>Theta Chi</td>
<td>Housing</td>
<td>Greek</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1040-001</td>
<td>FEL ROUTE</td>
<td>Biotechnology</td>
<td>6</td>
<td>MONDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1041-001</td>
<td>FEL ROUTE</td>
<td>Biotec Dev Inst</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1383-001</td>
<td>FEL ROUTE</td>
<td>Center of Excellence</td>
<td>8</td>
<td>MONDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1380-001</td>
<td>FEL ROUTE</td>
<td>Florida Biologix</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0479-001</td>
<td>FEL ROUTE</td>
<td>UF-Hort Equip Shed</td>
<td>8</td>
<td>THURSDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0186-001</td>
<td>FEL ROUTE</td>
<td>UF-Dairy Research</td>
<td>8</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0186-002</td>
<td>FEL ROUTE</td>
<td>Dairy Research Barn</td>
<td>8</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0196-001</td>
<td>FEL ROUTE</td>
<td>UF-Beef Research Unit</td>
<td>4</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-001</td>
<td>FEL ROUTE</td>
<td>Family Practice</td>
<td>8</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Building Type</td>
<td>Days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1099-001</td>
<td>FEL ROUTE</td>
<td>UF Horticulture Offices</td>
<td>THURSDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1232-001</td>
<td>FEL ROUTE</td>
<td>UF-Fisheries & Aquatic Sci</td>
<td>THURSDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1232-002</td>
<td>FEL ROUTE</td>
<td>UF-Fisheries & Aquatic Sci 2</td>
<td>THURSDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308-001</td>
<td>FEL ROUTE</td>
<td>Santa Fe Beef</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0145-001</td>
<td>FEL ROUTE</td>
<td>Lake Wauburg North</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0314-001</td>
<td>FEL ROUTE</td>
<td>Lake Wauburg South</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0436-001</td>
<td>FEL ROUTE</td>
<td>Austin Cary</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0142-001</td>
<td>FEL ROUTE</td>
<td>Austin Cary Conference Bldg.</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0145-002</td>
<td>FEL ROUTE</td>
<td>Lake Wauburg North</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3312-001</td>
<td>FEL ROUTE</td>
<td>University Press of Florida</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3448-001</td>
<td>FEL ROUTE</td>
<td>Pediatric Primary Care @ Tower Square</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339-001</td>
<td>FEL ROUTE</td>
<td>Agronomy Field Office</td>
<td>WEDNESDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0359-001</td>
<td>NORTH CAMPUS</td>
<td>Gator Corner Dining</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0720-001</td>
<td>NORTH CAMPUS</td>
<td>Mech Engrg Academic</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024-001</td>
<td>NORTH CAMPUS</td>
<td>Weil Hall South Academic Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0634-001</td>
<td>NORTH CAMPUS</td>
<td>Nuclear Sci-South Academic Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0719-001</td>
<td>NORTH CAMPUS</td>
<td>Material Engrg Academic Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100-001</td>
<td>NORTH CAMPUS</td>
<td>Williamson Hall Academic Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0172-001</td>
<td>NORTH CAMPUS</td>
<td>Newell Annex Administration</td>
<td>ON-CALL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60
<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Building/Room</th>
<th>Type</th>
<th>Use</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0032-001</td>
<td>NORTH CAMPUS</td>
<td>HUB - Gator Dining</td>
<td>Dining</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0042-001</td>
<td>NORTH CAMPUS</td>
<td>CSE - Computer Sci / Eng Bldg</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0267-001</td>
<td>NORTH CAMPUS</td>
<td>Turlington Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0267-002</td>
<td>NORTH CAMPUS</td>
<td>Turlington Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
</tr>
<tr>
<td>0028-001</td>
<td>NORTH CAMPUS</td>
<td>Chemistry Lab</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0689-001</td>
<td>NORTH CAMPUS</td>
<td>Library West AM</td>
<td>Academic</td>
<td>Library</td>
<td>8</td>
</tr>
<tr>
<td>0689-002</td>
<td>NORTH CAMPUS</td>
<td>Library West-PM</td>
<td>Academic</td>
<td>Library</td>
<td>8</td>
</tr>
<tr>
<td>0031-001</td>
<td>NORTH CAMPUS</td>
<td>Criser Hall</td>
<td>Administration</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0002-001</td>
<td>NORTH CAMPUS</td>
<td>Grinter Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
</tr>
<tr>
<td>0475-001</td>
<td>NORTH CAMPUS</td>
<td>Food Science</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0043-001</td>
<td>NORTH CAMPUS</td>
<td>Marsten Science Library</td>
<td>Academic</td>
<td>Library</td>
<td>6</td>
</tr>
<tr>
<td>0272-001</td>
<td>NORTH CAMPUS</td>
<td>Rinker Building</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
</tr>
<tr>
<td>0268-001</td>
<td>NORTH CAMPUS</td>
<td>Architecture Building</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0599-001</td>
<td>NORTH CAMPUS</td>
<td>Fine Arts</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0041-001</td>
<td>NORTH CAMPUS</td>
<td>Mallory Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
</tr>
<tr>
<td>0498-001</td>
<td>NORTH CAMPUS</td>
<td>McCarty-D</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0687-001</td>
<td>NORTH CAMPUS</td>
<td>Constans Theatre</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>NORTH CAMPUS</td>
<td>Academic Advisement</td>
<td>Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>0019-001</td>
<td>NORTH CAMPUS</td>
<td>Academic Advisement</td>
<td>Administration</td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0072-001</td>
<td>NORTH CAMPUS</td>
<td>Pugh Hall</td>
<td>Administration</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0135-001</td>
<td>NORTH CAMPUS</td>
<td>Murphree Hall</td>
<td>Housing Dorm</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0017-002</td>
<td>NORTH CAMPUS</td>
<td>Thomas Hall</td>
<td>Housing Dorm</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0017-001</td>
<td>NORTH CAMPUS</td>
<td>Thomas Hall</td>
<td>Housing Dorm</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0261-001</td>
<td>NORTH CAMPUS</td>
<td>Emerson Alumni Hall</td>
<td>Administration</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>3381-001</td>
<td>NORTH CAMPUS</td>
<td>HR Building</td>
<td>Administration</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0897-001</td>
<td>NORTH CAMPUS</td>
<td>Collegiate Living Org.</td>
<td>Administration</td>
<td>8</td>
<td>FRIDAY</td>
</tr>
<tr>
<td>0874-001</td>
<td>NORTH CAMPUS</td>
<td>Inst Black Cult</td>
<td>Administration</td>
<td>6</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0045-001</td>
<td>NORTH CAMPUS</td>
<td>Tolbert Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0045-002</td>
<td>NORTH CAMPUS</td>
<td>Tolbert Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0052-001</td>
<td>NORTH CAMPUS</td>
<td>Riker Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0052-002</td>
<td>NORTH CAMPUS</td>
<td>Riker Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0592-001</td>
<td>NORTH CAMPUS</td>
<td>East Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0592-002</td>
<td>NORTH CAMPUS</td>
<td>East Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0053-001</td>
<td>NORTH CAMPUS</td>
<td>Weaver Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0053-002</td>
<td>NORTH CAMPUS</td>
<td>Weaver Hall</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Campus</td>
<td>Location</td>
<td>Type</td>
<td>Room</td>
<td>Days</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>0591-001</td>
<td>NORTH CAMPUS</td>
<td>Graham Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
</tr>
<tr>
<td>0591-002</td>
<td>NORTH CAMPUS</td>
<td>Graham Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>3</td>
</tr>
<tr>
<td>0589-001</td>
<td>NORTH CAMPUS</td>
<td>Graham Cafe</td>
<td>Dining</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>0031-002</td>
<td>NORTH CAMPUS</td>
<td>Criser Hall</td>
<td>Administration</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0558-001</td>
<td>NORTH CAMPUS</td>
<td>WUFT Transmitter Bldg. (Milhopper Rd.)</td>
<td>Miscellaneous</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1630-001</td>
<td>NORTH CAMPUS</td>
<td>Library Warehouse</td>
<td>Miscellaneous</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0050-001</td>
<td>NORTH CAMPUS</td>
<td>North Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
</tr>
<tr>
<td>0015-001</td>
<td>NORTH CAMPUS</td>
<td>Buckman Hall - AM</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
</tr>
<tr>
<td>0015-002</td>
<td>NORTH CAMPUS</td>
<td>Buckman Hall</td>
<td>Housing</td>
<td>Dorm</td>
<td>8</td>
</tr>
<tr>
<td>0105-001</td>
<td>NORTH CAMPUS</td>
<td>The 105 Classroom Bldg.</td>
<td>Academic</td>
<td>Mixed</td>
<td>3</td>
</tr>
<tr>
<td>1628-001</td>
<td>NORTH CAMPUS</td>
<td>East Campus Office Bldg.</td>
<td>Administration</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3451-001</td>
<td>NORTH CAMPUS</td>
<td>WarpHaus 534 SW 4th Av.</td>
<td>Miscellaneous</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1616-002</td>
<td>NORTH CAMPUS</td>
<td>East Campus Office Building</td>
<td>Administration</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3440-001</td>
<td>NORTH CAMPUS</td>
<td>Innovation Hub</td>
<td>Academic</td>
<td>Mixed</td>
<td>4</td>
</tr>
<tr>
<td>1633-002</td>
<td>NORTH CAMPUS</td>
<td>Library Facility 1 - 4280 NE 49th Av.</td>
<td>Miscellaneous</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0981-001</td>
<td>SOUTH CAMPUS</td>
<td>Microbiology</td>
<td>Academic</td>
<td>Mixed</td>
<td>8</td>
</tr>
<tr>
<td>0316-001</td>
<td>SOUTH CAMPUS</td>
<td>SW Rec Center</td>
<td>Recreational</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0315-001</td>
<td>SOUTH CAMPUS</td>
<td>Performing Arts Auditorium</td>
<td>Recreational</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0308-001</td>
<td>SOUTH CAMPUS</td>
<td>Powell Hall - Fla Museum</td>
<td>Academic</td>
<td>Mixed</td>
<td>6</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Description</td>
<td>Type</td>
<td>Usage</td>
<td>Days</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>0970-001</td>
<td>SOUTH CAMPUS</td>
<td>Entomology Nematology</td>
<td>Academic</td>
<td>Animal Lab</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0541-001</td>
<td>SOUTH CAMPUS</td>
<td>Housing Cabinet Shop</td>
<td></td>
<td></td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0831-001</td>
<td>SOUTH CAMPUS</td>
<td>HAZ Mat Facility</td>
<td>Miscellaneous</td>
<td></td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0742-001</td>
<td>SOUTH CAMPUS</td>
<td>Neurobio Surge # 5</td>
<td>Medical</td>
<td></td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0717-001</td>
<td>SOUTH CAMPUS</td>
<td>Fifield Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0631-001</td>
<td>SOUTH CAMPUS</td>
<td>Soils Lab</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY</td>
</tr>
<tr>
<td>0561-001</td>
<td>SOUTH CAMPUS</td>
<td>Plant Pathology</td>
<td>Academic</td>
<td>Plant Lab</td>
<td>TUESDAY</td>
</tr>
<tr>
<td>0471-001</td>
<td>SOUTH CAMPUS</td>
<td>Vet Science</td>
<td>Academic</td>
<td>Animal Lab</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0462-001</td>
<td>SOUTH CAMPUS</td>
<td>Physical Therapy</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0749-001</td>
<td>SOUTH CAMPUS</td>
<td>Life Sci/Phsy</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0070-001</td>
<td>SOUTH CAMPUS</td>
<td>Nano</td>
<td>Academic</td>
<td>Mixed</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0747-001</td>
<td>SOUTH CAMPUS</td>
<td>Bartram Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>1070-001</td>
<td>SOUTH CAMPUS</td>
<td>Wastewater Plant</td>
<td>Miscellaneous</td>
<td></td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>1070-002</td>
<td>SOUTH CAMPUS</td>
<td>WWTP-Grit Bin</td>
<td>Miscellaneous</td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>1070-003</td>
<td>SOUTH CAMPUS</td>
<td>WWRP-Grit Bin</td>
<td>Miscellaneous</td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0092-001</td>
<td>SOUTH CAMPUS</td>
<td>Physics Building</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0856-001</td>
<td>SOUTH CAMPUS</td>
<td>Phelps Lab</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0725-001</td>
<td>SOUTH CAMPUS</td>
<td>Engineering Sci</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0721-001</td>
<td>SOUTH CAMPUS</td>
<td>Benton Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0033-001</td>
<td>SOUTH CAMPUS</td>
<td>Electrical Eng</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0724-001</td>
<td>SOUTH CAMPUS</td>
<td>Black Hall</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0723-001</td>
<td>SOUTH CAMPUS</td>
<td>Chemical Eng</td>
<td>Academic</td>
<td>Mixed</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0474-001</td>
<td>SOUTH CAMPUS</td>
<td>Frazier Rogers</td>
<td>Academic</td>
<td>Mixed</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0181-001</td>
<td>SOUTH CAMPUS</td>
<td>Dickinson Hall - East</td>
<td>Recreational</td>
<td></td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Campus</td>
<td>Location</td>
<td>Category</td>
<td>Days</td>
<td>Schedule</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>0181-002</td>
<td>SOUTH CAMPUS</td>
<td>Dickinson Hall - West</td>
<td>Recreational</td>
<td>6</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
</tr>
<tr>
<td>0179-001</td>
<td>SOUTH CAMPUS</td>
<td>EH&S Office - Pest Control</td>
<td>Miscellaneous</td>
<td>4</td>
<td>TUESDAY, THURSDAY</td>
</tr>
<tr>
<td>0212-001</td>
<td>SOUTH CAMPUS</td>
<td>HPNP - Health Prof & Nursing Professions</td>
<td>Miscellaneous</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY</td>
</tr>
<tr>
<td>0051-001</td>
<td>SOUTH CAMPUS</td>
<td>UPD Annex</td>
<td>Miscellaneous</td>
<td>6</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0300-001</td>
<td>SOUTH CAMPUS</td>
<td>Diamond Village</td>
<td>Housing</td>
<td>6</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0301-001</td>
<td>SOUTH CAMPUS</td>
<td>Diamond Village</td>
<td>Housing</td>
<td>6</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0302-001</td>
<td>SOUTH CAMPUS</td>
<td>Diamond Village</td>
<td>Housing</td>
<td>6</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0303-001</td>
<td>SOUTH CAMPUS</td>
<td>Diamond Village</td>
<td>Housing</td>
<td>6</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0304-001</td>
<td>SOUTH CAMPUS</td>
<td>Diamond Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, THURSDAY</td>
</tr>
<tr>
<td>0536-001</td>
<td>SOUTH CAMPUS</td>
<td>Tanglewood Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, FRIDAY</td>
</tr>
<tr>
<td>0531-001</td>
<td>SOUTH CAMPUS</td>
<td>Tanglewood Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, FRIDAY</td>
</tr>
<tr>
<td>0530-001</td>
<td>SOUTH CAMPUS</td>
<td>Tanglewood Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, FRIDAY</td>
</tr>
<tr>
<td>0538-001</td>
<td>SOUTH CAMPUS</td>
<td>Tanglewood Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, FRIDAY</td>
</tr>
<tr>
<td>0538-002</td>
<td>SOUTH CAMPUS</td>
<td>Tanglewood Village</td>
<td>Housing</td>
<td>8</td>
<td>MONDAY, FRIDAY</td>
</tr>
<tr>
<td>0992-001</td>
<td>SOUTH CAMPUS</td>
<td>Horse Teach Unit</td>
<td>Academic Animal Lab</td>
<td>4</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0770-001</td>
<td>SOUTH CAMPUS</td>
<td>Swine Unit B</td>
<td>Academic Animal Lab</td>
<td>4</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0798-001</td>
<td>SOUTH CAMPUS</td>
<td>Bee Unit</td>
<td>Academic Animal Lab</td>
<td>4</td>
<td>ON-CALL</td>
</tr>
<tr>
<td>0587-001</td>
<td>SOUTH CAMPUS</td>
<td>Solar Energy Test House</td>
<td>Academic Mixed</td>
<td>8</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0892-001</td>
<td>SOUTH CAMPUS</td>
<td>Clinical Trials</td>
<td>Medical</td>
<td>3</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Building</td>
<td>Type</td>
<td>Groups</td>
<td>Day(s)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>0894-001</td>
<td>SOUTH CAMPUS</td>
<td>Beef Resch North (Sand Hill Farm)</td>
<td>Academic Animal Lab</td>
<td>3</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0350-001</td>
<td>SOUTH CAMPUS</td>
<td>Bio-Control Lab</td>
<td>Academic Mixed</td>
<td>4</td>
<td>WEDNESDAY</td>
</tr>
<tr>
<td>0459-001</td>
<td>SOUTH CAMPUS</td>
<td>Meats Lab</td>
<td>Academic Animal Lab</td>
<td>4</td>
<td>TUESDAY, FRIDAY</td>
</tr>
<tr>
<td>0459-002</td>
<td>SOUTH CAMPUS</td>
<td>Animal Science</td>
<td>Academic Animal Lab</td>
<td>8</td>
<td>TUESDAY, FRIDAY</td>
</tr>
<tr>
<td>1371-001</td>
<td>SOUTH CAMPUS</td>
<td>Animal Care #1 - BARC</td>
<td>Academic Animal Lab</td>
<td>4</td>
<td>FRIDAY</td>
</tr>
<tr>
<td>0473-001</td>
<td>SOUTH CAMPUS</td>
<td>Heat Plant #2</td>
<td>Miscellaneous</td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0211-001</td>
<td>SOUTH CAMPUS</td>
<td>Lift Station</td>
<td>Miscellaneous</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0057-001</td>
<td>SOUTH CAMPUS</td>
<td>IFAS Fac OPNS</td>
<td>Miscellaneous</td>
<td>4</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>1250-001</td>
<td>SOUTH CAMPUS</td>
<td>Fruit Crops</td>
<td>Miscellaneous</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>1162-001</td>
<td>SOUTH CAMPUS</td>
<td>SW Soccer Field</td>
<td>Recreational</td>
<td>6</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0227-001</td>
<td>SOUTH CAMPUS</td>
<td>Machine Shop</td>
<td>Miscellaneous</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0258-001</td>
<td>SOUTH CAMPUS</td>
<td>Weed Science</td>
<td>Academic Plant Lab</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>1213-001</td>
<td>SOUTH CAMPUS</td>
<td>Hort Head House</td>
<td>Housing Dorm</td>
<td>4</td>
<td>THURSDAY</td>
</tr>
<tr>
<td>0641-001</td>
<td>SOUTH CAMPUS</td>
<td>Primate Fac (On Call)</td>
<td>Academic Animal Lab</td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>1178-001</td>
<td>SOUTH CAMPUS</td>
<td>Orthopedics</td>
<td>Medical</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0309-001</td>
<td>SOUTH CAMPUS</td>
<td>Harn Museum</td>
<td>Recreational</td>
<td>6</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0579-001</td>
<td>SOUTH CAMPUS</td>
<td>Hume Hall East</td>
<td>Housing Dorm</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0574-001</td>
<td>SOUTH CAMPUS</td>
<td>Hume Hall West</td>
<td>Housing Dorm</td>
<td>8</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0594-001</td>
<td>SOUTH CAMPUS</td>
<td>Jennings East</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0594-002</td>
<td>SOUTH CAMPUS</td>
<td>Jennings East</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>0595-001</td>
<td>SOUTH CAMPUS</td>
<td>Jennings West</td>
<td>Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, FRIDAY, SATURDAY</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Building</td>
<td>Type</td>
<td>Room</td>
<td>Availability</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>0595-002</td>
<td>SOUTH CAMPUS</td>
<td>Jennings West Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0595-003</td>
<td>SOUTH CAMPUS</td>
<td>Jennings West Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0751-002</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-East Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0751-003</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-East Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0751-001</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-East Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0750-002</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-West Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0750-001</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-West Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0750-003</td>
<td>SOUTH CAMPUS</td>
<td>Beaty T-West Housing Dorm</td>
<td>3</td>
<td>MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY</td>
<td></td>
</tr>
<tr>
<td>0174-001</td>
<td>SOUTH CAMPUS</td>
<td>WRUF Tower</td>
<td>3</td>
<td>ON-CALL</td>
<td></td>
</tr>
<tr>
<td>0259-001</td>
<td>SOUTH CAMPUS</td>
<td>Treeo</td>
<td>6</td>
<td>WEDNESDAY</td>
<td></td>
</tr>
<tr>
<td>0473-002</td>
<td>SOUTH CAMPUS</td>
<td>Shands Water Chiller Plant (On Call)</td>
<td>4</td>
<td>ON-CALL</td>
<td></td>
</tr>
<tr>
<td>0242-001</td>
<td>SOUTH CAMPUS</td>
<td>Solar Energy Test lab</td>
<td>4</td>
<td>WEDNESDAY</td>
<td></td>
</tr>
<tr>
<td>0685-001</td>
<td>SOUTH CAMPUS</td>
<td>Food & Environmental Toxicology Lab</td>
<td>4</td>
<td>THURSDAY</td>
<td></td>
</tr>
<tr>
<td>0215-003</td>
<td>SOUTH CAMPUS</td>
<td>Vet Med Hospital (On Call)</td>
<td>3</td>
<td>ON-CALL</td>
<td></td>
</tr>
<tr>
<td>1377-001</td>
<td>SOUTH CAMPUS</td>
<td>Emerging Pathogens</td>
<td>6</td>
<td>WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0254-001</td>
<td>SOUTH CAMPUS</td>
<td>Parking Garage Complex</td>
<td>8</td>
<td>MONDAY, WEDNESDAY, FRIDAY</td>
<td></td>
</tr>
<tr>
<td>0165-001</td>
<td>SOUTH CAMPUS</td>
<td>Deriso Hall</td>
<td>6</td>
<td>MONDAY, WEDNESDAY</td>
<td></td>
</tr>
<tr>
<td>0484-001</td>
<td>SOUTH CAMPUS</td>
<td>IFAS Conference Center</td>
<td>4</td>
<td>WEDNESDAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0458-001</td>
<td>SOUTH CAMPUS</td>
<td>Vegetable crop storage shed (On Call)</td>
<td>Miscellaneous</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1356-002</td>
<td>SOUTH CAMPUS</td>
<td>AG-Enviromental Horticulture (On Call)</td>
<td>Academic Plant Lab</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1356-001</td>
<td>SOUTH CAMPUS</td>
<td>Great Southern Tree Conference - Temporary Dumpster (On Call)</td>
<td>Administration</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0152-001</td>
<td>SOUTH CAMPUS</td>
<td>Crop & Soils Field Lab</td>
<td>Academic Mixed</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0466-001</td>
<td>SOUTH CAMPUS</td>
<td>Animal Science Physiology Barn</td>
<td>Academic Animal Lab</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0271-001</td>
<td>SOUTH CAMPUS</td>
<td>Shands Facilites Admin</td>
<td>Administration</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2020-002</td>
<td>SOUTH CAMPUS</td>
<td>HOP - Health Outcomes & Policy (OnCall)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0805-001</td>
<td>SOUTH CAMPUS</td>
<td>IFAS Warehouse</td>
<td>Miscellaneous</td>
<td>4</td>
</tr>
</tbody>
</table>
B.2 Blank Recording Sheet

<table>
<thead>
<tr>
<th>Date:</th>
<th>Category/Subcategory</th>
<th>Weight</th>
<th>M %</th>
<th>Vol</th>
<th>V %</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus</td>
<td>Newspaper</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Category:</td>
<td>OCC</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Location:</td>
<td>High Grade</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Presence of other</td>
<td>Mixed Recyclable</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bins:</td>
<td>Boxboard</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Compostable/Soiled</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Composites/Other</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Paper</td>
<td>0.00</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Category/Subcategory</th>
<th>Weight</th>
<th>M %</th>
<th>Vol</th>
<th>V %</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Wt (lb):</td>
<td>Paper</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Plastic</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>#1-7 Pourable</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>#1-7 Other (nonpourable, nonfood)</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Food Service</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Nonfood EPS</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Films</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rigid Plastic/Other</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Metals</td>
<td>0.00</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Category/Subcategory</th>
<th>Weight</th>
<th>M %</th>
<th>Vol</th>
<th>V %</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Wt (lb):</td>
<td>Glass</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Food Waste</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Animal Byproducts</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yard Waste/other</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Organics</td>
<td>0.00</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Category/Subcategory</th>
<th>Weight</th>
<th>M %</th>
<th>Vol</th>
<th>V %</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Wt (lb):</td>
<td>Misc.</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Solid Waste</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Liquid Waste</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Misc.</td>
<td>0.00</td>
<td>lbs</td>
<td>0.00</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Category/Subcategory</th>
<th>Weight</th>
<th>M %</th>
<th>Vol</th>
<th>V %</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Wt (lb):</td>
<td>Total</td>
<td>DIV/0</td>
<td>0.0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>lbs</td>
<td>0.00</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>
B.3 Results by Weight

<table>
<thead>
<tr>
<th>Weight (lbs)</th>
<th>Category</th>
<th>Undergraduate Residence Halls</th>
<th>Greek Houses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Location</td>
<td>Broward, west</td>
<td>Hume, east</td>
</tr>
<tr>
<td>Paper</td>
<td>Newspaper</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OCC</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>High Grade</td>
<td>9.9</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Mixed Recyclable</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Boxboard</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Composites/ Other</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Total Paper</td>
<td>16.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Plastic</td>
<td>#1-7 Pourable</td>
<td>4.1</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>#1-7 Other (nonpourable, nonfood)</td>
<td>1.7</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Food Service</td>
<td>1.4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>Nonfood EPS</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Films</td>
<td>4.1</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Rigid Plastic/Other</td>
<td>3.2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Total Plastic</td>
<td>14.6</td>
<td>17.7</td>
</tr>
<tr>
<td>Metal</td>
<td>Aluminum & tin cans</td>
<td>1.5</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Scrap Metal/ Other</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Total Metal</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Glass</td>
<td>Total Glass</td>
<td>1.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Organics</td>
<td>Food Waste</td>
<td>24</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td>Compostable/ Soiled</td>
<td>21.1</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Animal & Human Byproducts</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Yard Waste/other</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Organics</td>
<td>45.1</td>
<td>56.5</td>
</tr>
<tr>
<td>Products</td>
<td>Total Products</td>
<td>15.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Solids</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Free liquids</td>
<td>10.8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Miscellaneous</td>
<td>14.2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>109.5</td>
<td>98.2</td>
</tr>
<tr>
<td></td>
<td>Houses (Fraternities & Sororities)</td>
<td>Family & Graduate Housing</td>
<td>Plant Lab</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Alpha Delta Pi</td>
<td>Phi Mu</td>
<td>Theta Chi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.1</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.8</td>
<td>2.3</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5</td>
<td>5.7</td>
<td>4</td>
</tr>
<tr>
<td>8.5</td>
<td>4.2</td>
<td>0.8</td>
<td>6.3</td>
</tr>
<tr>
<td>12.2</td>
<td>6.5</td>
<td>11.2</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>1.9</td>
<td>7.3</td>
<td>2.3</td>
<td>3.9</td>
</tr>
<tr>
<td>0.8</td>
<td>2.3</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>8.6</td>
<td>7.6</td>
<td>4.2</td>
<td>6.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>12.5</td>
<td>17.8</td>
<td>16.6</td>
<td>15.5</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>25</td>
<td>3.5</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>6.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>31.3</td>
<td>3.8</td>
</tr>
<tr>
<td>1.6</td>
<td>0</td>
<td>19.5</td>
<td>7.1</td>
</tr>
<tr>
<td>59.5</td>
<td>64.2</td>
<td>14.6</td>
<td>38.9</td>
</tr>
<tr>
<td>15.9</td>
<td>10.3</td>
<td>9.8</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75.4</td>
<td>74.5</td>
<td>24.4</td>
<td>49.6</td>
</tr>
<tr>
<td>5.8</td>
<td>0.1</td>
<td>74</td>
<td>8.7</td>
</tr>
<tr>
<td>1.8</td>
<td>0</td>
<td>6.9</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4.6</td>
<td>9.7</td>
</tr>
<tr>
<td>2.8</td>
<td>0</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>111.3</td>
<td>100</td>
<td>117.3</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Fine Arts Building C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Science & Human Nutrition</td>
<td>0.5</td>
<td>0.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Frazier Hall & Greenhouses</td>
<td>0.3</td>
<td>4.8</td>
<td>1</td>
</tr>
<tr>
<td>New Engineering Building</td>
<td>10.5</td>
<td>1.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Well Hall</td>
<td>1</td>
<td>2.6</td>
<td>2</td>
</tr>
<tr>
<td>Library West</td>
<td>3.5</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>5.8</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.1</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.1</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.1</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.7</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.7</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.1</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.2</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132</td>
<td>100.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grounds (PPD)</td>
<td>Housing Specialty Shop</td>
<td>Motor Pool</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3.1</td>
<td>5.1</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>3.1</td>
<td>7.6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>8.2</td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>3.3</td>
<td>2.5</td>
<td>2.7</td>
<td>3.5</td>
</tr>
<tr>
<td>2.9</td>
<td>3.1</td>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>14.2</td>
<td>27.5</td>
<td>17.3</td>
<td>24.2</td>
</tr>
<tr>
<td>3.4</td>
<td>6.8</td>
<td>4.7</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>1.7</td>
<td>2.7</td>
</tr>
<tr>
<td>1.8</td>
<td>1.2</td>
<td>0.5</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>3.5</td>
</tr>
<tr>
<td>7.9</td>
<td>7.1</td>
<td>7.6</td>
<td>11.1</td>
</tr>
<tr>
<td>0.7</td>
<td>3.9</td>
<td>11.5</td>
<td>3.7</td>
</tr>
<tr>
<td>16.4</td>
<td>21.2</td>
<td>27.3</td>
<td>26.4</td>
</tr>
<tr>
<td>2.4</td>
<td>1.5</td>
<td>1.7</td>
<td>0.7</td>
</tr>
<tr>
<td>6.1</td>
<td>0.7</td>
<td>4.1</td>
<td>1.9</td>
</tr>
<tr>
<td>8.5</td>
<td>2.2</td>
<td>5.8</td>
<td>2.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6</td>
<td>0.1</td>
<td>2.5</td>
</tr>
<tr>
<td>11.7</td>
<td>18.9</td>
<td>2.7</td>
<td>15.5</td>
</tr>
<tr>
<td>24</td>
<td>9.3</td>
<td>4.2</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>4.2</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>39.9</td>
<td>30.9</td>
<td>8.9</td>
<td>38</td>
</tr>
<tr>
<td>8.4</td>
<td>10.2</td>
<td>45.5</td>
<td>1.8</td>
</tr>
<tr>
<td>3.4</td>
<td>5</td>
<td>0.9</td>
<td>2.9</td>
</tr>
<tr>
<td>6.3</td>
<td>2.9</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>9.7</td>
<td>7.9</td>
<td>0.9</td>
<td>4.1</td>
</tr>
<tr>
<td>98.7</td>
<td>100.5</td>
<td>105.8</td>
<td>99.6</td>
</tr>
</tbody>
</table>
B.4 Results by Volume

<table>
<thead>
<tr>
<th>Volume (gal)</th>
<th>Location</th>
<th>Paper</th>
<th>Plastic</th>
<th>Metal</th>
<th>Glass</th>
<th>Organics</th>
<th>Products</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Newspaper</td>
<td>0.18</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>13.5</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCC</td>
<td>5.4</td>
<td>1.8</td>
<td>1.8</td>
<td>16.2</td>
<td>16.2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Grade</td>
<td>3.6</td>
<td>14.4</td>
<td>16.2</td>
<td>7.2</td>
<td>9</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixed Recyclable</td>
<td>3.6</td>
<td>5.4</td>
<td>5.4</td>
<td>0.9</td>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boxboard</td>
<td>12.6</td>
<td>21.6</td>
<td>16.2</td>
<td>40.5</td>
<td>13.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compostable/Soiled</td>
<td>52.2</td>
<td>73.8</td>
<td>18</td>
<td>44.1</td>
<td>41.4</td>
<td>52.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composites/Other</td>
<td>9</td>
<td>16.2</td>
<td>18</td>
<td>36</td>
<td>16.2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>95.58</td>
<td>140.4</td>
<td>75.6</td>
<td>145.8</td>
<td>94.5</td>
<td>115.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1-7 Pourable</td>
<td>27</td>
<td>19.8</td>
<td>19.8</td>
<td>16.2</td>
<td>27</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1-7 Other (nonpourable, nonfood)</td>
<td>10.8</td>
<td>14.4</td>
<td>12.6</td>
<td>10.8</td>
<td>14.4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Service</td>
<td>13.5</td>
<td>36</td>
<td>18</td>
<td>10.8</td>
<td>36</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonfood EPS</td>
<td>1.8</td>
<td>5.4</td>
<td>1.8</td>
<td>5.4</td>
<td>21.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Films</td>
<td>19.8</td>
<td>19.8</td>
<td>37.8</td>
<td>18</td>
<td>54</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rigid Plastic/Other</td>
<td>12.6</td>
<td>0.9</td>
<td>0.9</td>
<td>4.5</td>
<td>0.54</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>85.5</td>
<td>94.5</td>
<td>90.9</td>
<td>65.7</td>
<td>140.58</td>
<td>96.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aluminum & tin cans</td>
<td>3.6</td>
<td>12.6</td>
<td>5.4</td>
<td>1.8</td>
<td>7.2</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrap Metal/Other</td>
<td>0.9</td>
<td>2.7</td>
<td>3.6</td>
<td>1.8</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>4.5</td>
<td>15.3</td>
<td>9</td>
<td>3.6</td>
<td>9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass Total</td>
<td>0.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>4.5</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Waste</td>
<td>13.5</td>
<td>15.3</td>
<td>18</td>
<td>9</td>
<td>29.7</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Animal & Human Byproducts</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yard Waste/other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>13.5</td>
<td>24.3</td>
<td>18</td>
<td>9</td>
<td>29.7</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Products Total</td>
<td>18</td>
<td>2.7</td>
<td>14.4</td>
<td>14.4</td>
<td>11.7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solids</td>
<td>3.6</td>
<td>30.6</td>
<td>1.8</td>
<td>4.5</td>
<td>14.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free liquids</td>
<td>1.5</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>5.1</td>
<td>30.6</td>
<td>2.3</td>
<td>5.5</td>
<td>17.4</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>223.08</td>
<td>242.1</td>
<td>276.8</td>
<td>175.6</td>
<td>358.68</td>
<td>237.7</td>
</tr>
<tr>
<td>Greek Houses (Fraternities & Sororities)</td>
<td>Family & Graduate Housing</td>
<td>Plant Lab</td>
<td>Animal Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Tau Omega</td>
<td>Alpha Delta Pi</td>
<td>Phi Mu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12.6</td>
<td>15.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1.8</td>
<td>0.9</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>1.26</td>
<td>0.9</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>9</td>
<td>4.5</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>9</td>
<td>14.4</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>17.1</td>
<td>14.4</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.98</td>
<td>70.56</td>
<td>43.2</td>
<td>58.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>5.4</td>
<td>15.3</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>8.1</td>
<td>21.6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>0</td>
<td>0</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.8</td>
<td>37.8</td>
<td>18</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>0</td>
<td>1.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.4</td>
<td>58.5</td>
<td>66.6</td>
<td>103.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>41.4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>4.5</td>
<td>2.7</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>5.4</td>
<td>20.7</td>
<td>52.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.72</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27.9</td>
<td>27.9</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27.9</td>
<td>27.9</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>8.1</td>
<td>0.18</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
<td>0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>2.05</td>
<td>0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.08</td>
<td>173.23</td>
<td>158.58</td>
<td>236.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bartram Carr Hall & Greenhouses</th>
<th>Chemistry Building / Leigh Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.54</td>
</tr>
<tr>
<td>130.5</td>
<td>119.7</td>
</tr>
<tr>
<td>48.6</td>
<td>36.5</td>
</tr>
<tr>
<td>105.3</td>
<td>92.7</td>
</tr>
<tr>
<td>48.6</td>
<td>39.6</td>
</tr>
<tr>
<td>94.5</td>
<td>43.2</td>
</tr>
<tr>
<td>101.7</td>
<td>57.6</td>
</tr>
<tr>
<td>36.5</td>
<td>19.8</td>
</tr>
<tr>
<td>81.0</td>
<td>43.2</td>
</tr>
<tr>
<td>59.4</td>
<td>19.8</td>
</tr>
<tr>
<td>72.0</td>
<td>30.6</td>
</tr>
<tr>
<td>16.2</td>
<td>18.5</td>
</tr>
<tr>
<td>3.6</td>
<td>9.0</td>
</tr>
<tr>
<td>0</td>
<td>36.5</td>
</tr>
<tr>
<td>27.9</td>
<td>23.4</td>
</tr>
<tr>
<td>174.08</td>
<td>199.36</td>
</tr>
<tr>
<td></td>
<td>Academic</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Entomology</td>
<td>4.5</td>
</tr>
<tr>
<td>Building</td>
<td>4.5</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>12.6</td>
</tr>
<tr>
<td>Building C</td>
<td>5.4</td>
</tr>
<tr>
<td>Building</td>
<td>9</td>
</tr>
<tr>
<td>Building C</td>
<td>50.4</td>
</tr>
<tr>
<td>Building</td>
<td>14.4</td>
</tr>
<tr>
<td>Building C</td>
<td>100.8</td>
</tr>
<tr>
<td>Building</td>
<td>7.2</td>
</tr>
<tr>
<td>Building C</td>
<td>14.4</td>
</tr>
<tr>
<td>Building</td>
<td>36</td>
</tr>
<tr>
<td>Building C</td>
<td>5.4</td>
</tr>
<tr>
<td>Building</td>
<td>73.8</td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>Frazier</td>
<td>4.5</td>
</tr>
<tr>
<td>Rogers Hall &</td>
<td>4.5</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>12.6</td>
</tr>
<tr>
<td>Library West</td>
<td>5.4</td>
</tr>
<tr>
<td>Library West</td>
<td>9</td>
</tr>
<tr>
<td>Library West</td>
<td>50.4</td>
</tr>
<tr>
<td>Library West</td>
<td>14.4</td>
</tr>
<tr>
<td>Library West</td>
<td>100.8</td>
</tr>
<tr>
<td>Library West</td>
<td>7.2</td>
</tr>
<tr>
<td>Library West</td>
<td>14.4</td>
</tr>
<tr>
<td>Library West</td>
<td>36</td>
</tr>
<tr>
<td>Library West</td>
<td>5.4</td>
</tr>
<tr>
<td>Library West</td>
<td>73.8</td>
</tr>
<tr>
<td>Library West</td>
<td>0.9</td>
</tr>
<tr>
<td>Library West</td>
<td>4.5</td>
</tr>
<tr>
<td>Library West</td>
<td>0.9</td>
</tr>
<tr>
<td>Library West</td>
<td>10.8</td>
</tr>
<tr>
<td>Library West</td>
<td>0</td>
</tr>
<tr>
<td>Library West</td>
<td>18</td>
</tr>
<tr>
<td>Library West</td>
<td>28.8</td>
</tr>
<tr>
<td>Library West</td>
<td>3.6</td>
</tr>
<tr>
<td>Library West</td>
<td>3.6</td>
</tr>
<tr>
<td>Library West</td>
<td>0.25</td>
</tr>
<tr>
<td>Library West</td>
<td>3.85</td>
</tr>
<tr>
<td>Library West</td>
<td></td>
</tr>
<tr>
<td></td>
<td>216.25</td>
</tr>
<tr>
<td></td>
<td>230.32</td>
</tr>
<tr>
<td></td>
<td>193.06</td>
</tr>
<tr>
<td>Dining</td>
<td>Medical</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Broward Dining</td>
<td>Shands Renal</td>
</tr>
<tr>
<td>Fresh Food Co</td>
<td>Dialysis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>384.3</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>14.4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>582.3</td>
</tr>
<tr>
<td>16.2</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>1584</td>
</tr>
<tr>
<td>12.6</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>805.5</td>
</tr>
<tr>
<td>54</td>
<td>114.3</td>
</tr>
<tr>
<td></td>
<td>81.18</td>
</tr>
<tr>
<td></td>
<td>4245.48</td>
</tr>
<tr>
<td>3.6</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>770.4</td>
</tr>
<tr>
<td>0</td>
<td>16.2</td>
</tr>
<tr>
<td>3.6</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>766.8</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>291.78</td>
</tr>
<tr>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td>3.6</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>61.2</td>
</tr>
<tr>
<td>1.8</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>199.8</td>
</tr>
<tr>
<td>41.4</td>
<td>183.6</td>
</tr>
<tr>
<td></td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4026.42</td>
</tr>
<tr>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>1.8</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>345.78</td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>10.8</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>10.8</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>747.18</td>
</tr>
<tr>
<td>1.8</td>
<td>32.4</td>
</tr>
<tr>
<td>0.18</td>
<td>3.6</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.68</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>208.28</td>
</tr>
<tr>
<td>111.48</td>
<td>352.4</td>
</tr>
<tr>
<td></td>
<td>240.48</td>
</tr>
<tr>
<td></td>
<td>10050.32</td>
</tr>
</tbody>
</table>
C. Phase II

C.1 Blank Sort Sheet

<table>
<thead>
<tr>
<th>Waste Composition Study</th>
<th>Name__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck information</td>
<td></td>
</tr>
<tr>
<td>Driver Name</td>
<td></td>
</tr>
<tr>
<td>Truck type</td>
<td></td>
</tr>
<tr>
<td>Truck Number</td>
<td></td>
</tr>
<tr>
<td>Truck weight</td>
<td></td>
</tr>
<tr>
<td>Truck volume</td>
<td></td>
</tr>
<tr>
<td>Load total weight</td>
<td></td>
</tr>
<tr>
<td>Collection type</td>
<td>Circle One</td>
</tr>
<tr>
<td>Substream</td>
<td>Res Com Indus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper</th>
<th>Gross (lbs)</th>
<th>Bin (lbs)</th>
<th>Gross (lbs)</th>
<th>Bin (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardboard</td>
<td></td>
<td></td>
<td>PET, HDPE (#1-2)</td>
<td></td>
</tr>
<tr>
<td>Newspaper</td>
<td></td>
<td></td>
<td>PVC, LDPE, PP, PS, Other (#3-7)</td>
<td></td>
</tr>
<tr>
<td>Office paper</td>
<td></td>
<td></td>
<td>Plastic film</td>
<td></td>
</tr>
<tr>
<td>Junk mail</td>
<td></td>
<td></td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>pasteboard</td>
<td></td>
<td></td>
<td>Other rigid</td>
<td></td>
</tr>
<tr>
<td>miscellaneous paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aseptic cartons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Organic	
Food & Soiled Paper	
Yard	
Diapers, etc	

| Plastics | |
| aseptic cartons | |

Glass	
clear glass	
brown glass	
Green, other	

Metal	
aluminum cans	
tin and steel cans	
non ferrous metals	
ferrous metals	

HHW	
Rx, needles	
paint/aerosol cans	
batteries	
mercury wastes	

Other	
intermed. <2"	
fines <1"	
textiles	

Durable	
large appliances	
small appliances	

| QA/QC Signature | Date |

C.2 Results by Weight

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>UF3510-23A</th>
<th>Sample Code</th>
<th>UF4310-APR</th>
<th>Sample Code</th>
<th>UF4538-W</th>
<th>Sample Code</th>
<th>UF4310-THU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>23-Apr-14</td>
<td>Date</td>
<td>23-Apr-14</td>
<td>Date</td>
<td>24-Apr-14</td>
<td>Date</td>
<td>24-Apr-14</td>
</tr>
<tr>
<td>Time</td>
<td>10:12 AM</td>
<td>Time</td>
<td>11:10 AM</td>
<td>Time</td>
<td>10:26 AM</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Truck Number</td>
<td>3510</td>
<td>Truck Number</td>
<td>4538</td>
<td>Truck Number</td>
<td>4538</td>
<td>Truck Number</td>
<td>4310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYETHYLENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed List of Items

- **Paper Products**
 - Cardboard: 17.3
 - Newspaper: 9.7
 - Office Paper: 17.0
 - Pasteboard: 13.8
 - Misc. Paper: 7.1
 - Aseptic Cartons: 8.6

- **Organics**
 - Food & Soiled Paper: 85.0
 - Yard Trash: 7.5
 - Diapers: 12.4
 - Clear Glass: 6.6

- **Metal**
 - Aluminium Cans: 6.8
 - Tin/Steel Cans: 9.6
 - Non-Ferrous Metal: 6.0
 - Ferrous Metals: 0.0

- **Other**
 - <2" Fines: 24.1
 - Textiles: 9.3

- **Plastics**
 - PET, HDPE: 19.3
 - PVC/LDPE/PP/PS/Other: 24.0
 - Polystyrene: 43.9

- **C&D Debris**
 - Carpet: 0.0
 - Concrete & Rock: 0.0

- **Hazard**
 - Rx/Needles: 0.0

- **Durable**
 - Large Appliances: 0.0

- **Total**
 - Total Weight Sorted (lbs): 1598

Note: Specific values and units have been omitted for brevity.
<table>
<thead>
<tr>
<th>Sample Code</th>
<th>UF-4538-THU</th>
<th>Sample Code</th>
<th>UF-4538-FRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>24-Apr-14</td>
<td>Date</td>
<td>25-Apr-14</td>
</tr>
<tr>
<td>Time</td>
<td>11:00 AM</td>
<td>Time</td>
<td>2:22 PM</td>
</tr>
<tr>
<td>Truck Number</td>
<td>4538</td>
<td>Truck Number</td>
<td>4538</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample (lb)</th>
<th>Bin (lb)</th>
<th>Net (lb)</th>
<th>Sample (lb)</th>
<th>Bin (lb)</th>
<th>Net (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>4.9</td>
<td>7.6</td>
<td>20.4</td>
<td>4.9</td>
<td>15.5</td>
</tr>
<tr>
<td>6.0</td>
<td>4.9</td>
<td>1.1</td>
<td>9.8</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>9.6</td>
<td>4.9</td>
<td>4.7</td>
<td>25.7</td>
<td>4.9</td>
<td>20.8</td>
</tr>
<tr>
<td>8.1</td>
<td>4.9</td>
<td>3.2</td>
<td>9.8</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>10.9</td>
<td>4.9</td>
<td>6.0</td>
<td>12.5</td>
<td>4.9</td>
<td>7.6</td>
</tr>
<tr>
<td>11.1</td>
<td>4.9</td>
<td>6.2</td>
<td>12.6</td>
<td>4.9</td>
<td>7.7</td>
</tr>
<tr>
<td>8.3</td>
<td>4.9</td>
<td>3.4</td>
<td>10.0</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>71.5</td>
<td>14.7</td>
<td>56.8</td>
<td>88.1</td>
<td>14.7</td>
<td>73.4</td>
</tr>
<tr>
<td>6.7</td>
<td>4.9</td>
<td>1.8</td>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
</tr>
<tr>
<td>17.6</td>
<td>9.8</td>
<td>7.8</td>
<td>5.4</td>
<td>4.9</td>
<td>0.5</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0</td>
<td>1.9</td>
<td>2.2</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>6.5</td>
<td>4.9</td>
<td>1.6</td>
</tr>
<tr>
<td>5.7</td>
<td>4.9</td>
<td>0.8</td>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
</tr>
<tr>
<td>5.8</td>
<td>4.9</td>
<td>0.9</td>
<td>7.1</td>
<td>4.9</td>
<td>2.2</td>
</tr>
<tr>
<td>6.8</td>
<td>4.9</td>
<td>1.9</td>
<td>5.8</td>
<td>4.9</td>
<td>0.9</td>
</tr>
<tr>
<td>5.6</td>
<td>4.9</td>
<td>0.7</td>
<td>9.3</td>
<td>4.9</td>
<td>4.4</td>
</tr>
<tr>
<td>6.1</td>
<td>4.9</td>
<td>1.2</td>
<td>5.3</td>
<td>4.9</td>
<td>0.4</td>
</tr>
<tr>
<td>32.1</td>
<td>4.9</td>
<td>27.2</td>
<td>24.0</td>
<td>4.9</td>
<td>19.1</td>
</tr>
<tr>
<td>12.2</td>
<td>4.9</td>
<td>7.3</td>
<td>9.1</td>
<td>4.9</td>
<td>4.2</td>
</tr>
<tr>
<td>25.8</td>
<td>4.9</td>
<td>20.9</td>
<td>21.5</td>
<td>4.9</td>
<td>16.6</td>
</tr>
<tr>
<td>4.1</td>
<td>1.7</td>
<td>2.4</td>
<td>3.9</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>18.5</td>
<td>9.8</td>
<td>8.7</td>
<td>18.4</td>
<td>9.8</td>
<td>8.6</td>
</tr>
<tr>
<td>30.6</td>
<td>14.7</td>
<td>15.9</td>
<td>26.1</td>
<td>14.7</td>
<td>11.4</td>
</tr>
<tr>
<td>46.6</td>
<td>19.6</td>
<td>27.0</td>
<td>45.8</td>
<td>19.6</td>
<td>26.2</td>
</tr>
<tr>
<td>9.8</td>
<td>4.9</td>
<td>4.9</td>
<td>5.4</td>
<td>4.9</td>
<td>0.5</td>
</tr>
<tr>
<td>17.5</td>
<td>4.9</td>
<td>12.6</td>
<td>5.7</td>
<td>4.9</td>
<td>0.8</td>
</tr>
<tr>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
</tr>
<tr>
<td>14.5</td>
<td>4.9</td>
<td>9.6</td>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
<td>0.0</td>
</tr>
<tr>
<td>5.8</td>
<td>4.9</td>
<td>0.9</td>
<td>6.2</td>
<td>4.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>

243.5 | | | 242.3 | | |